Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 199, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164255

RESUMEN

Individual optical addressing in chains of trapped atomic ions requires the generation of many small, closely spaced beams with low cross-talk. Furthermore, implementing parallel operations necessitates phase, frequency, and amplitude control of each individual beam. Here, we present a scalable method for achieving all of these capabilities using a high-performance integrated photonic chip coupled to a network of optical fibre components. The chip design results in very low cross-talk between neighbouring channels even at the micrometre-scale spacing by implementing a very high refractive index contrast between the channel core and cladding. Furthermore, the photonic chip manufacturing procedure is highly flexible, allowing for the creation of devices with an arbitrary number of channels as well as non-uniform channel spacing at the chip output. We present the system used to integrate the chip within our ion trap apparatus and characterise the performance of the full individual addressing setup using a single trapped ion as a light-field sensor. Our measurements showed intensity cross-talk below ~10-3 across the chip, with minimum observed cross-talk as low as ~10-5.

2.
Nature ; 580(7803): 345-349, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296191

RESUMEN

Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems1 with low-error entanglement gates operated within tens of microseconds using the vibrational motion of few-ion crystals2,3. To exceed the level of complexity tractable by classical computers the main challenge is to realize fast entanglement operations in crystals made up of many ions (large ion crystals)4. The strong dipole-dipole interactions in polar molecule5 and Rydberg atom6,7 systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems8. Here we combine the benefits of these approaches: we report a two-ion entangling gate with 700-nanosecond gate time that uses the strong dipolar interaction between trapped Rydberg ions, which we use to produce a Bell state with 78 per cent fidelity. The sources of gate error are identified and a total error of less than 0.2 per cent is predicted for experimentally achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes an approximate gate error of 10-4 in a large ion crystal of 100 ions. This provides a way to speed up and scale up trapped-ion quantum computers and simulators substantially.

3.
Phys Rev Lett ; 124(8): 080401, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167322

RESUMEN

The existence of ideal quantum measurements is one of the fundamental predictions of quantum mechanics. In theory, an ideal measurement projects a quantum state onto the eigenbasis of the measurement observable, while preserving coherences between eigenstates that have the same eigenvalue. The question arises whether there are processes in nature that correspond to such ideal quantum measurements and how such processes are dynamically implemented in nature. Here we address this question and present experimental results monitoring the dynamics of a naturally occurring measurement process: the coupling of a trapped ion qutrit to the photon environment. By taking tomographic snapshots during the detection process, we show that the process develops in agreement with the model of an ideal quantum measurement with an average fidelity of 94%.

4.
Phys Rev Lett ; 123(15): 153602, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702307

RESUMEN

Usually the influence of the quadratic Stark effect on an ion's trapping potential is minuscule and only needs to be considered in atomic clock experiments. In this work we excite a trapped ion to a Rydberg state with polarizability ∼8 orders of magnitude higher than a low-lying electronic state; we find that the highly polarizable ion experiences a vastly different trapping potential owing to the Stark effect. We observe changes in trap stiffness, equilibrium position, and minimum potential, which can be tuned using the trapping electric fields. These effects lie at the heart of several proposed studies, including a high-fidelity submicrosecond entangling operation; in addition we demonstrate these effects may be used to minimize ion micromotion. Mitigation of Stark effects is important for coherent control of Rydberg ions; we illustrate this by carrying out the first Rabi oscillations between a low-lying electronic state and a Rydberg state of an ion.

5.
Phys Rev Lett ; 119(22): 220501, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286758

RESUMEN

Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA