Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytokine Growth Factor Rev ; 73: 150-162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225643

RESUMEN

In order to adapt to a higher proliferative rate and an increased demand for energy sources, cancer cells rewire their metabolic pathways, a process currently recognized as a hallmark of cancer. Even though the metabolism of glucose is perhaps the most discussed metabolic shift in cancer, lipid metabolic alterations have been recently recognized as relevant players in the growth and proliferation of cancer cells. Importantly, some of these metabolic alterations are reported to induce a drug resistant phenotype in cancer cells. The acquisition of drug resistance traits severely hinders cancer treatment, being currently considered one of the major challenges of the oncological field. Evidence suggests that Extracellular Vesicles (EVs), which play a crucial role in intercellular communication, may act as facilitators of tumour progression, survival and drug resistance by modulating several aspects involved in the metabolism of cancer cells. This review aims to gather and discuss relevant data regarding metabolic reprograming in cancer, particularly involving the glycolytic and lipid alterations, focusing on its influence on drug resistance and highlighting the relevance of EVs as intercellular mediators of this process.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/patología , Neoplasias/metabolismo , Comunicación Celular , Resistencia a Antineoplásicos , Lípidos/uso terapéutico
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430163

RESUMEN

Monitoring measurable residual disease (MRD) is crucial to assess treatment response in Multiple Myeloma (MM). Detection of MRD in peripheral blood (PB) by exploring Extracellular Vesicles (EVs), and their cargo, would allow frequent and minimally invasive monitoring of MM. This work aims to detect biomarkers of MRD in EVs isolated from MM patient samples at diagnosis and remission and compare the MRD-associated content between BM and PB EVs. EVs were isolated by size-exclusion chromatography, concentrated by ultrafiltration, and characterized according to their size and concentration, morphology, protein concentration, and the presence of EV-associated protein markers. EVs from healthy blood donors were used as controls. It was possible to isolate EVs from PB and BM carrying MM markers. Diagnostic samples had different levels of MM markers between PB and BM paired samples, but no differences between PB and BM were found at remission. EVs concentration was lower in the PB of healthy controls than of patients, and MM markers were mostly not detected in EVs from controls. This study pinpoints the potential of PB EVs from MM remission patients as a source of MM biomarkers and as a non-invasive approach for monitoring MRD.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/metabolismo , Neoplasia Residual/diagnóstico , Biopsia Líquida , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
3.
Drug Resist Updat ; 59: 100797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34955385

RESUMEN

Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.


Asunto(s)
Neoplasias , Microambiente Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
4.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804613

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...