Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2202926119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969786

RESUMEN

The Ca2+-activated SK4 K+ channel is gated by Ca2+-calmodulin (CaM) and is expressed in immune cells, brain, and heart. A cryoelectron microscopy (cryo-EM) structure of the human SK4 K+ channel recently revealed four CaM molecules per channel tetramer, where the apo CaM C-lobe and the holo CaM N-lobe interact with the proximal carboxyl terminus and the linker S4-S5, respectively, to gate the channel. Here, we show that phosphatidylinositol 4-5 bisphosphate (PIP2) potently activates SK4 channels by docking to the boundary of the CaM-binding domain. An allosteric blocker, BA6b9, was designed to act to the CaM-PIP2-binding domain, a previously untargeted region of SK4 channels, at the interface of the proximal carboxyl terminus and the linker S4-S5. Site-directed mutagenesis, molecular docking, and patch-clamp electrophysiology indicate that BA6b9 inhibits SK4 channels by interacting with two specific residues, Arg191 and His192 in the linker S4-S5, not conserved in SK1-SK3 subunits, thereby conferring selectivity and preventing the Ca2+-CaM N-lobe from properly interacting with the channel linker region. Immunohistochemistry of the SK4 channel protein in rat hearts showed a widespread expression in the sarcolemma of atrial myocytes, with a sarcomeric striated Z-band pattern, and a weaker occurrence in the ventricle but a marked incidence at the intercalated discs. BA6b9 significantly prolonged atrial and atrioventricular effective refractory periods in rat isolated hearts and reduced atrial fibrillation induction ex vivo. Our work suggests that inhibition of SK4 K+ channels by targeting drugs to the CaM-PIP2-binding domain provides a promising anti-arrhythmic therapy.


Asunto(s)
Fibrilación Atrial , Calmodulina , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Bloqueadores de los Canales de Potasio , Animales , Fibrilación Atrial/tratamiento farmacológico , Señalización del Calcio , Calmodulina/metabolismo , Microscopía por Crioelectrón , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 4,5-Difosfato , Bloqueadores de los Canales de Potasio/farmacología , Ratas
2.
Am J Physiol Heart Circ Physiol ; 320(2): H713-H724, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337966

RESUMEN

The complex pathophysiology of atrial fibrillation (AF) is governed by multiple risk factors in ways that are still elusive. Basic electrophysiological properties, including atrial effective refractory period (AERP) and conduction velocity, are major factors determining the susceptibility of the atrial myocardium to AF. Although there is a great need for affordable animal models in this field of research, in vivo rodent studies are limited by technical challenges. Recently, we introduced an implantable system for long-term assessment of AF susceptibility in ambulatory rats. However, technical considerations did not allow us to perform concomitant supraventricular electrophysiology measurements. Here, we designed a novel quadripolar electrode specifically adapted for comprehensive atrial studies in ambulatory rats. Electrodes were fabricated from medical-grade silicone, four platinum-iridium poles, and stainless-steel fixating pins. Initial quality validation was performed ex vivo, followed by implantation in adult rats and repeated electrophysiological studies 1, 4, and 8 wk postimplantation. Capture threshold was stable. Baseline AERP values (38.1 ± 2.3 and 39.5 ± 2.0 using 70-ms and 120-ms S1-S1 cycle lengths, respectively) confirmed the expected absence of rate adaptation in the unanesthetized state and validated our prediction that markedly higher values reported under anesthesia are nonphysiological. Evaluation of AF substrate in parallel with electrophysiological parameters validated our recent finding of a gradual increase in AF susceptibility over time and demonstrated that this phenomenon is associated with an electrical remodeling process characterized by AERP shortening. Our findings indicate that the miniature quadripolar electrode is a potent new tool, which opens a window of opportunities for better utilization of rats in AF research.NEW & NOTEWORTHY Rodents are increasingly used in AF research. However, technical challenges restrict long-term supraventricular electrophysiology studies in these species. Here, we developed an implantable electrode adapted for such studies in the rat. Our findings indicate that this new tool is effective for long-term follow-up of critical parameters such as atrial refractoriness. Obtained data shed light on the normal electrophysiology and on the increased AF susceptibility that develops in rats with implanted atrial electrodes over time.


Asunto(s)
Fibrilación Atrial/etiología , Estimulación Cardíaca Artificial , Electrodos Implantados , Técnicas Electrofisiológicas Cardíacas/instrumentación , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Monitoreo Ambulatorio/instrumentación , Marcapaso Artificial , Potenciales de Acción , Animales , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Diseño de Equipo , Masculino , Valor Predictivo de las Pruebas , Ratas Sprague-Dawley , Periodo Refractario Electrofisiológico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...