Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 2(8): e535, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35994571

RESUMEN

In basic and translational cancer research, the majority of biopsies are stored in formalin-fixed paraffin-embedded (FFPE) samples. Chromatin accessibility reflects the degree to which nuclear macromolecules can physically interact with chromatinized DNA and plays a key role in gene regulation in different physiological conditions. As such, the profiling of chromatin accessibility in archived FFPE tissue can be critical to understanding gene regulation in health and disease. Due to the high degree of DNA damage in FFPE samples, accurate mapping of chromatin accessibility in these specimens is extremely difficult. To address this issue, we recently established FFPE-ATAC, a highly sensitive method based on T7-Tn5-mediated transposition followed by in vitro transcription (IVT), to generate high-quality chromatin accessibility profiles with 500-50,000 nuclei from a single FFPE tissue section. In FFPE-ATAC, which we describe here, the T7-Tn5 adaptors are inserted into the genome after FFPE sample preparation and are unlikely to sustain the DNA breakage that occurs during reverse cross-linking of these samples. It should, therefore, remain at the ends of broken accessible chromatin sites after reverse cross-linking. IVT is then used to convert the two ends of the broken DNA fragments to RNA molecules before making sequencing libraries from the IVT RNAs and further decoding Tn5 adaptor insertion sites in the genome. Through this strategy, users can decode the flanking sequences of the accessible chromatin even if there are breaks between adjacent pairs of T7-T5 adaptor insertion sites. This method is applicable to dissecting chromatin profiles of a small section of the tissue sample, characterizing stage and region-specific gene regulation and disease-associated chromatin regulation in FFPE tissues. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Nuclei isolation from FFPE tissue samples Basic Protocol 2: T7-Tn5 transposase tagmentation, reverse-crosslinking, and in vitro transcription Basic Protocol 3: Preparation of libraries for high-throughput sequencing.


Asunto(s)
Cromatina , ADN , Cromatina/genética , ADN/genética , Formaldehído , Adhesión en Parafina , Análisis de Secuencia de ADN/métodos
2.
Bio Protoc ; 12(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35865114

RESUMEN

The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. Nevertheless, it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissue of interest are limited. Here, we present F FPE tissue with a ntibody-guided c hromatin t agmentation with sequencing (FACT-seq), highly sensitive method to efficiently profile histone modifications in FFPE tissue by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We showed a very small piece of FFPE tissue section containing ~4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. In archived FFPE human colorectal and human glioblastoma cancer tissue, H3K27ac FACT-seq revealed disease specific super enhancers. In summary, FACT-seq allows researchers to decode histone modifications like H3K27ac and H3K27me3 in archival FFPE tissues with high sensitivity, thus allowing us to understand epigenetic regulation. Graphical abstract: ( i ) FFPE tissue section; ( ii ) Isolated nuclei; ( iii ) Primary antibody, secondary antibody and T7-pA-Tn5 bind to targets; ( iv ) DNA purification; ( v ) In vitro transcription and sequencing library preparation; ( vi ) Sequencing.

3.
Genome Res ; 32(1): 150-161, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261731

RESUMEN

Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for >10 yr. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators to better understand epigenetic regulation in cancer and precision medicine.


Asunto(s)
Cromatina , Formaldehído , Cromatina/genética , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Humanos , Adhesión en Parafina/métodos , Fijación del Tejido/métodos
4.
Nucleic Acids Res ; 49(21): e125, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34534335

RESUMEN

The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. But it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissues of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), the first highly sensitive method to efficiently profile histone modifications in FFPE tissues by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We proved a very small piece of FFPE tissue section containing ∼4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. H3K27ac FACT-seq revealed disease-specific super enhancers in the archived FFPE human colorectal and human glioblastoma cancer tissue. In summary, FACT-seq allows decoding the histone modifications in archival FFPE tissues with high sensitivity and help researchers to better understand epigenetic regulation in cancer and human disease.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética , Histonas/análisis , Animales , Línea Celular , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Proteína Estafilocócica A/metabolismo , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...