Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Insects ; 14(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37999088

RESUMEN

Environmental pollution with antibiotics can cause antibiotic resistance in microorganisms, including the intestinal microbiota of various insects. The effects of low-dose aminoglycoside antibiotic (amikacin) on the resident gut microbiota of Galleria mellonella, its digestion, its physiological parameters, and the resistance of this species to bacteria Bacillus thuringiensis were investigated. Here, 16S rDNA analysis revealed that the number of non-dominant Enterococcus mundtii bacteria in the eighteenth generation of the wax moth treated with amikacin was increased 73 fold compared to E. faecalis, the dominant bacteria in the native line of the wax moth. These changes were accompanied by increased activity of acidic protease and glutathione-S-transferase in the midgut tissues of larvae. Ultra-thin section electron microscopy detected no changes in the structure of the midgut tissues. In addition, reduced pupa weight and resistance of larvae to B. thuringiensis were observed in the eighteenth generation of the wax moth reared on a diet with amikacin. We suggest that long-term cultivation of wax moth larvae on an artificial diet with an antibiotic leads to its adaptation due to changes in both the gut microbiota community and the physiological state of the insect organism.

2.
Arch Insect Biochem Physiol ; 114(4): e22053, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37695720

RESUMEN

Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Avispas , Wolbachia , Animales , Larva/metabolismo , Avispas/metabolismo , Rickettsiales , Mariposas Nocturnas/metabolismo
3.
Mycotoxin Res ; 39(2): 135-149, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37071305

RESUMEN

Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.


Asunto(s)
Mariposas Nocturnas , Ácido Tenuazónico , Animales , Larva , Mariposas Nocturnas/genética , Mariposas Nocturnas/microbiología , Hongos
4.
Microorganisms ; 11(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37110366

RESUMEN

Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.

5.
Viruses ; 15(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851611

RESUMEN

The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.


Asunto(s)
Escarabajos , Dicistroviridae , Insecticidas , Solanum tuberosum , Animales , Metagenoma
6.
Pest Manag Sci ; 78(9): 3823-3835, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35238478

RESUMEN

BACKGROUND: We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS: Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION: The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.


Asunto(s)
Bacillus thuringiensis , Escarabajos , Solanum tuberosum , Animales , Citrobacter freundii , Larva
7.
PLoS One ; 16(3): e0248704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760838

RESUMEN

Gut physiology and the bacterial community play crucial roles in insect susceptibility to infections and insecticides. Interactions among Colorado potato beetle Leptinotarsa decemlineata (Say), its bacterial associates, pathogens and xenobiotics have been insufficiently studied. In this paper, we present our study of the survival, midgut histopathology, activity of digestive enzymes and bacterial communities of L. decemlineata larvae under the influence of Bacillus thuringiensis var. tenebrionis (morrissoni) (Bt), a natural complex of avermectins and a combination of both agents. Moreover, we estimated the impact of culturable enterobacteria on the susceptibility of the larvae to Bt and avermectins. An additive effect between Bt and avermectins was established regarding the mortality of the larvae. Both agents led to the destruction of midgut tissues, a decrease in the activity of alpha-amylases and alkaline proteinases, a decrease in the Spiroplasma leptinotarsae relative abundance and a strong elevation of Enterobacteriaceae abundance in the midgut. Moreover, an elevation of the enterobacterial CFU count was observed under the influence of Bt and avermectins, and the greatest enhancement was observed after combined treatment. Insects pretreated with antibiotics were less susceptible to Bt and avermectins, but reintroduction of the predominant enterobacteria Enterobacter ludwigii, Citrobacter freundii and Serratia marcescens increased susceptibility to both agents. We suggest that enterobacteria play an important role in the acceleration of Bt infection and avermectin toxicoses in L. decemlineata and that the additive effect between Bt and avermectin may be mediated by alterations in the bacterial community.


Asunto(s)
Bacillus thuringiensis/fisiología , Escarabajos/microbiología , Resistencia a los Insecticidas , Insecticidas/metabolismo , Microbiota/efectos de los fármacos , Control Biológico de Vectores/métodos , Animales
8.
Sci Rep ; 11(1): 1299, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446848

RESUMEN

Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut.


Asunto(s)
Escarabajos/inmunología , Insecticidas/farmacología , Intestinos/inmunología , Ivermectina/análogos & derivados , Metarhizium/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Ivermectina/farmacología , Transducción de Señal/inmunología
9.
J Fungi (Basel) ; 6(3)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927906

RESUMEN

Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.

10.
Fungal Biol ; 123(12): 927-935, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733735

RESUMEN

Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Escarabajos/microbiología , Microbiota , Cambios Post Mortem , Amoníaco/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Cadáver , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metarhizium/crecimiento & desarrollo , Nitratos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
PeerJ ; 7: e7931, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667017

RESUMEN

Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnaeus, 1762) larvae (dopamine concentration, glutathione S-transferase (GST), nonspecific esterases (EST), acid proteases, lysozyme-like, phenoloxidase (PO) activities) was studied. It is shown that the combination of these agents leads to a synergistic effect on mosquito mortality. Colonization of Ae. aegypti larvae by hyphal bodies following water inoculation with conidia is shown for the first time. The larvae affected by fungi are characterized by a decrease in PO and dopamine levels. In the initial stages of toxicosis and/or fungal infection (12 h posttreatment), increases in the activity of insect detoxifying enzymes (GST and EST) and acid proteases are observed after monotreatments, and these increases are suppressed after combined treatment with the fungus and avermectins. Lysozyme-like activity is also most strongly suppressed under combined treatment with the fungus and avermectins in the early stages posttreatment (12 h). Forty-eight hours posttreatment, we observe increases in GST, EST, acid proteases, and lysozyme-like activities under the influence of the fungus and/or avermectins. The larvae affected by avermectins accumulate lower levels of conidia than avermectin-free larvae. On the other hand, a burst of bacterial CFUs is observed under treatment with both the fungus and avermectins. We suggest that disturbance of the responses of the immune and detoxifying systems under the combined treatment and the development of opportunistic bacteria may be among the causes of the synergistic effect.

12.
J Insect Physiol ; 116: 106-117, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077710

RESUMEN

Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.


Asunto(s)
Antibiosis , Escarabajos/fisiología , Metarhizium/fisiología , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/microbiología , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/crecimiento & desarrollo , Hemolinfa/enzimología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología
13.
Sci Rep ; 9(1): 4012, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850650

RESUMEN

Gut bacteria influence the development of different pathologies caused by bacteria, fungi and parasitoids in insects. Wax moth larvae became more susceptible to fungal infections after envenomation by the ectoparasitoid Habrobracon hebetor. In addition, spontaneous bacterioses occurred more often in envenomated larvae. We analyzed alterations in the midgut microbiota and immunity of the wax moth in response to H. hebetor envenomation and topical fungal infection (Beauveria bassiana) alone or in combination using 16S rRNA sequencing, an analysis of cultivable bacteria and a qPCR analysis of immunity- and stress-related genes. Envenomation led to a predominance shift from enterococci to enterobacteria, an increase in CFUs and the upregulation of AMPs in wax moth midguts. Furthermore, mycosis nonsignificantly increased the abundance of enterobacteria and the expression of AMPs in the midgut. Combined treatment led to a significant increase in the abundance of Serratia and a greater upregulation of gloverin. The oral administration of predominant bacteria (Enterococcus faecalis, Enterobacter sp. and Serratia marcescens) to wax moth larvae synergistically increased fungal susceptibility. Thus, the activation of midgut immunity might prevent the bacterial decomposition of envenomated larvae, thus permitting the development of fungal infections. Moreover, changes in the midgut bacterial community may promote fungal killing.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Lepidópteros/inmunología , Lepidópteros/microbiología , Microbiota/inmunología , Micosis/inmunología , Micosis/microbiología , Animales , Bacterias/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Hongos/genética , Larva/microbiología , Microbiota/genética , Mariposas Nocturnas/microbiología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...