Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(30): 20690-20700, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39041807

RESUMEN

Four donor-acceptor-donor compounds consisting of 9,9-dimethyl-9,10-dihydroacridine donors differently linked to a benzothiadiazole acceptor were designed using DFT calculations and synthesized, namely 4,7-bis(4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (1), 4,7-bis(2,5-dimethyl-4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (2), 4,7-bis(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (3), and 4-(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (4). As predicted theoretically, all studied compounds were electrochemically active both in the reduction as well as in the oxidation modes. They underwent one electron quasi-reversible reduction. Oxidation of 1 and 2 involved a two electron process transforming them into dications and carrying out, in parallel, their dimerization. Oxidation of 3 and 4 resulted in their oligomerization (polymerization). The electrochemically determined ionisation potentials (IP) of 1-4 were similar, covering a narrow range of 5.28-5.33 eV and were consistent with DFT calculations. Larger differences were found for experimentally determined electron affinity (EA) values, being significantly lower for 2 (|EA| = 2.59 eV) as compared to 1, 3 and 4 whose |EA| values were higher by 0.15-0.25 eV, again consistent with DFT calculations. DFT calculations predict positive values of ΔE(S1-T1) for all compounds i.e. in the range of 0.18 eV to 0.43 eV for 1, 3 and 4 and a significantly lower value for 2 (0.06 eV), indicating a possible RISC process in this case. DFT calculations of ΔE(S1-T2) lead to negative and very small values for 2-4 implying a possible involvement of higher lying triplets in the generation of singlet excitons. The investigated derivatives exhibited fluorescence in the orange-red spectral range (550-770 nm) and were strongly dependent on the solvent polarity. The highest PLQY value of 37% was measured for 1 in toluene. The PLQY values significantly improved upon deoxygenation of the studied solutions. Solid state samples also exhibited higher PLQY values as compared to those determined for DCM solutions. These findings were rationalized by partial suppression of the vibrationally induced emission quenching in the solid state due to the intermolecular interaction confinement.

2.
Ultrason Sonochem ; 75: 105594, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34044321

RESUMEN

Sonochemical production of tin(II) and tin(IV) sulfides is investigated. Different conditions of syntheses are examined: used solvent (ethanol or ethylenediamine), source of tin (SnCl2 or SnCl4), the molar ratio of thioacetamide to the tin source, and time of sonication. The obtained powders are characterized by the X-ray diffraction method (PXRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and the Tauc method. Raman and FT-IR measurements were performed for the obtained samples, which additionally confirmed the crystallinity and phase composition of the samples. The influence of experimental conditions on composition (is it SnS or SnS2), morphology, and on the bandgap of obtained products is elucidated. It was found that longer sonication times favor more crystalline product. Each of bandgaps is direct and most of them show typical values - c.a. 1.3 eV for SnS and 2.4 eV for SnS2. However, there are some exceptions. Synthesized powders show a variety of forms such as needles, flower-like, rods, random agglomerates (SnS2) and balls (SnS). Using ethanol as a solvent led to powders of SnS2 independently of which tin chloride is used. Sonochemistry in ethylenediamine is more diverse: this solvent protects Sn2+ cations from oxidation so mostly SnS is obtained, while SnCl4 does not produce powder of SnS2 but Sn(SO4)2 instead or, at a higher ratio of thioacetamide to SnCl4, green clear mixture.

3.
Ultrason Sonochem ; 68: 105186, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32485630

RESUMEN

SnS and SnS2 powders were synthesized with the use of ultrasound. The indirect sonication was applied with ultrasound frequency 40 kHz and acoustic power 38 W/L. Products of syntheses were examined with PXRD, TEM, EDX, XPS, and UV-Vis (the Tauc method) investigations. The resulting microparticles were used for tip coating of copper cathodes. These electrodes were used in the degradation of model azo-dye Metanil Yellow by the electro-Fenton process. The efficiencies of degradation using copper, SnS-coated copper, and SnS2-coated copper cathodes are compared. Kinetics of degradation of Metanil Yellow in the electro-Fenton process with the application of three different cathodes is also investigated. It was found that the degradation follows pseudo-first-order and that SnS-coated copper cathode improves the efficiency of degradation, while SnS2-coated copper cathode decreases the efficiency of degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA