Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mon Not R Astron Soc ; 457(4): 4089-4113, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32848283

RESUMEN

We present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg2 of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for ~1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that 55 - 22 + 34 % of microlensed stars host a snowline planet. Moreover, we find that Neptunes-mass planets are ~ 10 times more common than Jupiter-mass planets. The companion-to-host mass ratio distribution shows a deficit at q ~ 10-2, separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower-mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.

2.
Nature ; 527(7579): 484-7, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26560034

RESUMEN

The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

3.
Science ; 345(6192): 46-9, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24994642

RESUMEN

Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.

4.
Nature ; 495(7439): 76-9, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23467166

RESUMEN

In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

5.
Nature ; 481(7380): 167-9, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237108

RESUMEN

Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...