Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Res Commun ; 47(2): 779-789, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36494510

RESUMEN

Kalirin (gene: KALRN) is a Rho-GEF kinase linked to neurodegenerative diseases in humans. Unexpectedly, various polymorphisms in KALRN gene were previously associated with resistance to bacterial infections in ruminants. In this study, we evaluated the effect of the rs384223075 (RS-075) deletion in KALRN intron 5 on the occurrence of Mycobacterium bovis and Brucella abortus infections in cattle. We performed two separate case-control association analyses: one for bovine tuberculosis (bTB) using 308 Holstein and Jersey cows from three herds with prevalence between 5 and 15% for this infection; and another for brucellosis using 140 Holstein and beef crossbred cows from two herds with high prevalence for brucellosis (> 30%). In the bTB analysis, the RS-075 deletion frequency was higher among cases than controls (p = 0.0001), and the absence of the RS-075 deletion allele was associated with negative PPD-skin test results (p = 0.0009) at genotype level. On the contrary, RS-075 was not associated with Brucella spp. serological status (p = 0.72) but, unexpectedly, the deletion allele was more frequent among controls than cases in the beef crossbred herd (0.31 vs. 0.14, p = 0.02). In concordance with this observation, in vitro assays showed that the RS-075 deletion could be linked to an enhanced cellular response to bacterial antigens and unspecific stimulation in mononuclear cells derived from beef crossbred cows, specifically the reactive nitrogen species production (p = 0.008) and proliferation capacity (p = 0.018). This study is consistent with other reports that support an important role of the KALRN gene and its polymorphisms in the host response to intracellular pathogens.


Asunto(s)
Brucelosis Bovina , Brucelosis , Enfermedades de los Bovinos , Tuberculosis Bovina , Humanos , Femenino , Bovinos , Animales , Tuberculosis Bovina/genética , Tuberculosis Bovina/epidemiología , Intrones , Brucelosis/epidemiología , Brucelosis/veterinaria , Brucelosis Bovina/genética , Brucelosis Bovina/epidemiología , Rumiantes , Fenotipo
2.
Gene ; 770: 145345, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33333217

RESUMEN

Selective breeding of genetically resistant animals is considered a promising strategy to face the problem of nematode resistance to anthelmintics and mitigate concerns about the presence of chemical residues in animal food products and the environment. Gastrointestinal nematode resistance is a complex, multifactorial trait related to host immunity. However, the mechanisms underlying host resistance and response to infection remain to be fully elucidated. In this context, the objective of this study was to provide insight into the chromosomal regions determining nematode resistance and resilience in Corriedale and resistance in Pampinta sheep breeds. A total of 170 single nucleotide polymorphisms (SNP) from 76 candidate genes for immune response were studied in 624 Corriedale and 304 Pampinta animals. Lambs underwent artificial or natural challenges with infective larvae mainly from Haemonchus contortus. Fecal egg counts, estimated breeding values for fecal egg counts, and rate of packed cell volume change and FAMACHA© score change over the challenge were used, when available, as indicators of host parasite resistance or resilience. Phenotype-genotype association studies were conducted and significance values obtained were adjusted for multiple testing errors. Eight SNPs, located on OARs 3, 6, 12, and 20, reached significance in Corriedale sheep under artificial challenge. Those SNP represent allelic variants from the MHC-Ovine Lymphocyte Antigen-DRA, two C-type lectin domain families, the Interleukin 2 receptor ß, the Toll-like receptor 10, the Mannan binding lectin serine peptidase 2, and the NLR family, CARD domain containing 4 genes. On Pampinta lambs under natural challenge, we found three significant SNPs, located in the TIMP metallopeptidase inhibitor 3, the FBJ murine osteosarcoma viral oncogene homolog, and the Interleukin 20 receptor alpha genes, on OARs 3, 7, and 8, respectively. The results obtained herein confirm genomic regions previously reported as associated with nematode resistance in other sheep breeds, reinforcing their role in host response to parasites. These findings contribute to gain knowledge on parasite resistance and resilience in Corriedale sheep and report for the first time SNPs associated with resistance to gastrointestinal parasite infections in Pampinta breed.


Asunto(s)
Resistencia a la Enfermedad/genética , Hemoncosis/genética , Haemonchus , Helmintiasis Animal/genética , Polimorfismo de Nucleótido Simple , Enfermedades de las Ovejas/genética , Ovinos/genética , Animales , Argentina , Ovinos/parasitología , Enfermedades de las Ovejas/parasitología
3.
Cytokine ; 115: 109-115, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30477986

RESUMEN

Brucellosis is an important zoonotic disease caused by infection with Brucella spp. It generates major economic losses in livestock production worldwide. Goats are the principal hosts of B. melitensis, the main infection agent of caprine and human brucellosis. The selection of resistance-related genes is considered one of the best long-term means to improve control to bacterial infection in domestic ruminants. We performed a candidate gene association study to test if six short insertion/deletion polymorphisms (InDels) at bacterial-infection related genes influence the resistance to Brucella infection in female creole goats. InDels (IRF3-540: rs660531540, FKBP5-294: rs448529294, TIRAP-561: rs657494561, PTPRT-588: rs667380588, KALRN-989: rs667660989 and RAB5a-016: rs661537016) were resolved by PCR-capillary electrophoresis in samples from 64 cases and 64 controls for brucellosis. Allelic frequencies were significantly different between cases and controls at IRF3-540 and KALRN-989 (p = 0.001 and 0.005). Indeed, the minor alleles (a and k) at InDels IRF3-540 and KALRN-989 were more frequent among controls than cases, providing evidence that these alleles confer protection against Brucella infection. Moreover, IRF3-540 a-containing genotypes (Aa and aa) were associated with absence of Brucella-specific antibodies in goats (p = 0.003; OR = 3.52; 95% CI = 1.55-7.96), and more specifically, a-allele was associated with resistance to Brucella infection in a dose-dependent manner. Also, we observed that the IRF3-540 deletion (a-allele) extends a conserved upstream ORF by 75 nucleotides to the main ORF, and thus it may decrease gene expression by reducing translation efficiency from the main ORF. These results suggest a potential functional role of IRF3-540 deletion in genetic resistance to Brucella infection in goats.


Asunto(s)
Brucelosis/genética , Cabras/genética , Factor 3 Regulador del Interferón/genética , Polimorfismo Genético/genética , Alelos , Animales , Brucella/patogenicidad , Femenino , Frecuencia de los Genes/genética , Genotipo , Sistemas de Lectura Abierta/genética
4.
BMC Genomics ; 19(1): 142, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439661

RESUMEN

BACKGROUND: Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS: We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS: Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.


Asunto(s)
Enfermedades de los Bovinos/genética , Leucosis Bovina Enzoótica/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple , Animales , Bovinos , Enfermedades de los Bovinos/virología , Leucosis Bovina Enzoótica/virología , Femenino , Haplotipos , Virus de la Leucemia Bovina/fisiología , Leucocitos/metabolismo , Leucocitos/virología , Desequilibrio de Ligamiento , Provirus/fisiología , Factores de Transcripción/genética , Carga Viral
5.
Vet Microbiol ; 207: 133-137, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28757013

RESUMEN

Brucellosis is the leading zoonosis on a worldwide scale and constitutes a major public health threat in many regions of the world. Several molecular markers associated with natural resistance to intracellular bacterial infection have been identified. Recently seven single-nucleotide polymorphisms (SNPs) located in the PTPRT gene were associated with resistance to Mycobacterium bovis infection in cattle. Here, we perform a case-control study to test if polymorphisms at PTPRT intron 8 might influence the resistance or susceptibility to Brucella infection in goats. DNA samples from 22 seropositive (cases) and 22 seronegative (controls) for brucellosis, unrelated female creole goats, were included in the present study. Four previously reported polymorphisms (SNP1: rs643551276, SNP2: rs651618967, SNP3: rs662137815 and SNP4: rs657542977) and a new SNP (SNP5: chr13: 691695526) were detected by PCR-DNA sequencing method. Genotypic and allelic frequencies differed significantly between cases and controls at SNPs 1, 2, 4 and 5 (p≤0.001). Indeed, the SNP1 TT, SNP2 TT, SNP4 CC and SNP5 TT genotypes were associated with absence of Brucella-specific antibodies (ORs=0.019 to 0.045). Moreover, haplotype association analysis revealed a significant association of the TTCCT haplotype with protection to Brucella infection (p≤1×10-4; OR=18), including the major allelic variants associated with resistance. These results represent the first evidence of genetic association between polymorphisms in the PTPRT gene and absence of brucellosis in goats.


Asunto(s)
Brucella , Brucelosis/veterinaria , Predisposición Genética a la Enfermedad , Enfermedades de las Cabras/microbiología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Argentina/epidemiología , Brucelosis/epidemiología , Brucelosis/genética , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/genética , Cabras , Haplotipos , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética
6.
PLoS One ; 11(5): e0154353, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171175

RESUMEN

The Angora goat populations in Argentina (AR), France (FR) and South Africa (SA) have been kept geographically and genetically distinct. Due to country-specific selection and breeding strategies, there is a need to characterize the populations on a genetic level. In this study we analysed genetic variability of Angora goats from three distinct geographical regions using the standardized 50k Goat SNP Chip. A total of 104 goats (AR: 30; FR: 26; SA: 48) were genotyped. Heterozygosity values as well as inbreeding coefficients across all autosomes per population were calculated. Diversity, as measured by expected heterozygosity (HE) ranged from 0.371 in the SA population to 0.397 in the AR population. The SA goats were the only population with a positive average inbreeding coefficient value of 0.009. After merging the three datasets, standard QC and LD-pruning, 15 105 SNPs remained for further analyses. Principal component and clustering analyses were used to visualize individual relationships within and between populations. All SA Angora goats were separated from the others and formed a well-defined, unique cluster, while outliers were identified in the FR and AR breeds. Apparent admixture between the AR and FR populations was observed, while both these populations showed signs of having some common ancestry with the SA goats. LD averaged over adjacent loci within the three populations per chromosome were calculated. The highest LD values estimated across populations were observed in the shorter intervals across populations. The Ne for the Angora breed was estimated to be 149 animals ten generations ago indicating a declining trend. Results confirmed that geographic isolation and different selection strategies caused genetic distinctiveness between the populations.


Asunto(s)
Variación Genética , Genética de Población , Genoma , Cabras/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Argentina , Cromosomas de los Mamíferos/genética , Francia , Marcadores Genéticos , Desequilibrio de Ligamiento/genética , Densidad de Población , Análisis de Componente Principal , Reproducibilidad de los Resultados , Sudáfrica , Estadística como Asunto
7.
J Appl Genet ; 56(4): 505-513, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25783851

RESUMEN

The prevention and control of bovine mastitis by enhancing natural defenses in animals is important to improve the quality of dairy products. Mastitis resistance is a complex trait which depends on genetic components, as well as environmental and physiological factors. The limitations of classical control measures have led to the search for alternative approaches to minimize the use of antibiotics by selecting naturally resistant animals. Polymorphisms in genes associated with the innate immune system are strong candidates to be evaluated as genetic markers. In this work, we evaluated a set of single nucleotide polymorphisms (SNPs) in candidate genes for health and production traits, and determined their association with the somatic cell score (SCS) as an indicator of mastitis in Argentinean dairy cattle. We evaluated 941 cows: Holstein (n = 677) and Holstein × Jersey (n = 264) crossbred, daughters from 22 bulls from 14 dairy farms located in the central dairy area of Argentina. Two of the 21 successfully genotyped markers were found to be significantly associated (p < 0.05) with the SCS: GHR_140 and OPN_8514C-T. The heterozygote genotype for GHR_140 showed a favorable effect in reducing the SCS. On the other hand, heterozygote genotypes for OPN8514C-T caused an increase in the SCS; moreover, combined genotypes for OPN SNPs showed an even larger effect. These findings can contribute to the design of effective marker-assisted selection programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Mastitis Bovina/genética , Leche/citología , Polimorfismo de Nucleótido Simple , Animales , Bovinos , Femenino , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Heterocigoto , Masculino , Análisis de Secuencia de ADN
8.
Vet Immunol Immunopathol ; 160(3-4): 230-4, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24906349

RESUMEN

Goats are susceptible to brucellosis and the detection of Brucella-infected animals is carried out by serological tests. In other ruminant species, polymorphisms in microsatellites (Ms) of 3' untranslated region (3'UTR) of the solute carrier family 11 member A1 (SLC11A1) gene were associated with resistance to Brucella abortus infection. Goats present two polymorphic Ms at the 3'UTR end of SLC11A1 gene, called regions A and B. Here, we evaluated if polymorphisms in regions A and/or B are associated with Brucella infection in goats. Serum (for the detection of Brucella-specific antibodies) and hair samples (for DNA isolation and structure analysis of the SLC11A1 gene) were randomly collected from 229 adult native goats from the northwest of Argentina. Serological status was evaluated by buffer plate antigen test (BPAT) complemented by the fluorescent polarization assay (FPA), and the genotype of the 3'UTR of the SLC11A1 gene was determined by capillary electrophoresis and confirmed by sequence analysis. Polymorphisms in regions A and B of the 3'UTR SLC11A1 gene were found statistically significant associated with protection to Brucella infection. Specifically, the association study indicates statistical significance of the allele A15 and B7/B7 genotype with absence of Brucella-specific antibodies (p=0.0003 and 0.0088, respectively). These data open a promising opportunity for limiting goat brucellosis through selective breeding of animals based on genetic markers associated with natural resistance to B. melitensis infection.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cabras/genética , Cabras/inmunología , Regiones no Traducidas 3' , Animales , Anticuerpos Antibacterianos/sangre , Secuencia de Bases , Brucella melitensis/inmunología , Brucelosis/genética , Brucelosis/inmunología , Brucelosis/veterinaria , ADN/genética , ADN/aislamiento & purificación , Femenino , Frecuencia de los Genes , Genotipo , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/inmunología , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA