Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 109(5): 054504, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006180

RESUMEN

The presented study examines the energetics of confined fluid flow in a rotating reference frame. Parallels are drawn to the corresponding scenario of rectilinear motion, where ejection of fluid results in linear propulsion of the frame. Absorption of flow energy into the frame motion leads to cooling of the ejected fluid. Relevance of the observed energetics to the temperature separation phenomenon in Ranque-Hilsch vortex tubes is discussed.

2.
J Chem Phys ; 125(9): 094108, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16965073

RESUMEN

Assigning effective atomic charges that properly reproduce the electrostatic fields of molecules is a crucial step in the construction of accurate interatomic potentials. We propose a new approach to calculate these charges, which as previous approaches are, is based on the idea of charge equilibration. However, we only allow charge to flow between covalently bonded neighbors by using the concept of so-called split charges. The semiempirical fit parameters in our approach do not only reflect atomic properties (electronegativity and atomic hardness) but also bond-dependent properties. The new method contains two popular but hitherto disjunct approaches as limiting cases. We apply our methodology to a set of molecules containing the elements silicon, carbon, oxygen, and hydrogen. Effective charges derived from electrostatic potential surfaces can be predicted more than twice as accurately as with previous works, at the expense of one additional fit parameter per bond type controlling the polarizability between two bonded atoms. Additional bond-type parameters can be introduced, but barely improve the results. An increase in accuracy of only 30% over existing techniques is achieved when predicting Mulliken charges. However, this could be improved with additional bond-type parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...