Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(11): 114102, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32199444

RESUMEN

Light-to-heat conversion in plasmonic nanoparticles (NPs) inside polymeric membranes is beneficial for improving the efficiency of membrane distillation for seawater desalination. However, the physical mechanisms ruling photothermal membrane distillation are unclear yet. Here, we model the plasmonic photothermal light-to-heat conversion from Ag, Au, and Cu nanofillers in polymeric membranes for membrane distillation. Photothermal effects in the cases of isolated metallic NPs and their assembly are investigated considering size effects and excitation sources. The increasing content of metallic NPs improves the efficiency of the light-to-heat conversion. For a polymeric membrane, filled with 25% Ag NPs, our model well reproduces the experimental temperature increase of 10 K. Specifically, we find that Ag NPs with a radius of around 30-40 nm are favorite candidates for membrane heating with excitation energy in the visible/near-UV range. The incorporation of a term associated with heat losses into the heat transfer equation well reproduces the cooling effect associated with vaporization at the membrane surface. Compared to Ag NPs, Au and Cu NPs show a broadened absorption cross section and their resonance has a nonlinear behavior with varying the excitation energy, better matching with sunlight radiation spectrum.

2.
Nanotechnology ; 31(39): 395706, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32150734

RESUMEN

After the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than is observed for CrI3). By means of mechanical cleavage and atomic force microscopy (AFM) combined with optical identification, we demonstrate the systematic isolation of single and few layer flakes onto 270 nm and 285 nm SiO2/Si (100) substrates with lateral size larger than graphene flakes isolated with the same method. The layer number identification has been carried with statistically significant data, quantifying the optical contrast as a function of the number of layers for up to six layers. Layer dependent optical contrast data have been fitted within the Fresnel equation formalism determining the real and imaginary part of the wavelength dependent refractive index of the material. A layer dependent (532 nm) micro-Raman study has been carried out down to two layers with no detectable spectral shifts as a function of the layer number and with respect to the bulk.

3.
Nanoscale Adv ; 2(10): 4728-4739, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132930

RESUMEN

Membrane distillation is envisaged to be a promising best practice to recover freshwater from seawater with the prospect of building low energy-consuming devices powered by natural and renewable energy sources in remote and less accessible areas. Moreover, there is an additional benefit of integrating this green technology with other well-established operations dedicated to desalination. Today, the development of membrane distillation depends on the productivity-efficiency ratio on a large scale. Despite hydrophobic commercial membranes being widely used, no membrane with suitable morphological and chemical feature is readily available in the market. Thus, there is a real need to identify best practices for developing new efficient membranes for more productive and eco-sustainable membrane distillation devices. Here, we propose engineered few-layer graphene membranes, showing enhanced trans-membrane fluxes and total barrier action against NaCl ions. The obtained performances are linked with filling polymeric membranes with few-layer graphene of 490 nm in lateral size, produced by the wet-jet milling technology. The experimental evidence, together with comparative analyses, confirmed that the use of more largely sized few-layer graphene leads to superior productivity related efficiency trade-off for the membrane distillation process. Herein, it was demonstrated that the quality of exfoliation is a crucial factor for addressing the few-layer graphene supporting the separation capability of the host membranes designed for water desalination.

4.
Nanoscale ; 11(24): 11521-11529, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31086934

RESUMEN

The effects of confinement of multilayer graphene platelets in hydrophobic microporous polymeric membranes are here examined. Intermolecular interactions between water vapour molecules and nanocomposite membranes are envisaged to originate assisted transport of water vapour in membrane distillation processes when a suitable filler-polymer ratio is reached. Mass transport coefficients are estimated under different working conditions, suggesting a strong dependence of the transport on molecular interactions. Remarkably, no thermal polarization is observed, although the filler exhibits ultrahigh thermal conductivity. In contrast, enhanced resistance to wetting as well as outstanding mechanical and chemical stability meets the basic requirements of water purification via membrane distillation. As a result, a significant improvement of the productivity-efficiency trade-off is achieved with respect to the pristine polymeric membrane when low amounts of platelets are confined in spherulitic-like PVDF networks.

5.
Sci Rep ; 7(1): 3445, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611385

RESUMEN

We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at ~1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed.

6.
J Phys Condens Matter ; 28(36): 363003, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27414212

RESUMEN

In this review, we present the applications of thermoplasmonics in membrane processes. We discuss the influence of the heat capacity of the solvent, the amount of plasmonic nanoparticles in the membrane, the intensity of the light source and the transmembrane flow rate on the increase of permeability. Remarkably, thermoplasmonic effects do not involve any noticeable loss of membrane rejection. Herein, we consider application feasibilities, including application fields, requirements of feed, alternatives of light sources, promising thermoplasmonic nanoparticles and scaling up issues.

7.
Nanoscale ; 8(16): 8474-9, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27049751

RESUMEN

We demonstrate that, in contrast to most two-dimensional materials, ultrathin flakes of InSe are stable under ambient conditions. Despite their ambient stability, InSe-based nanodevices show an environmental p-type doping, suppressed by capping InSe with hexagonal boron nitride. By means of transport experiments, density functional theory and vibrational spectroscopy, we attribute the p-type doping assumed by uncapped InSe under an ambient atmosphere to the decomposition of water at Se vacancies. We have estimated the site-dependent adsorption energy of O2, N2, H2O, CO and CO2 on InSe. A stable adsorption is found only for the case of H2O, with a charge transfer of only 0.01 electrons per water molecule.

8.
Phys Rev Lett ; 115(21): 216802, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636863

RESUMEN

We have investigated plasmonic excitations at the surface of Bi_{2}Se_{3}(0001) via high-resolution electron energy loss spectroscopy. For low parallel momentum transfer q_{∥}, the loss spectrum shows a distinctive feature peaked at 104 meV. This mode varies weakly with q_{∥}. The behavior of its intensity as a function of primary energy and scattering angle indicates that it is a surface plasmon. At larger momenta (q_{∥}~0.04 Å^{-1}), an additional peak, attributed to the Dirac plasmon, becomes clearly defined in the loss spectrum. Momentum-resolved loss spectra provide evidence of the mutual interaction between the surface plasmon and the Dirac plasmon of Bi_{2}Se_{3}. The proposed theoretical model accounting for the coexistence of three-dimensional doping electrons and two-dimensional Dirac fermions accurately represents the experimental observations. The results reveal novel routes for engineering plasmonic devices based on topological insulators.

9.
J Phys Condens Matter ; 25(34): 345303, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23912771

RESUMEN

The electronic response of quasi-freestanding graphene on Pt(111) has been measured by high-resolution electron energy loss spectroscopy. Loss spectra reveal the existence of three distinct excitations: a dispersing feature due to the ordinary sheet plasmon and two dispersionless modes at 0.2 and 0.5­0.6 eV. The latter two features are assigned to the coupled plasmon­phonon excitation and to an interface plasmon, respectively. The complex interactions of plasmons with other particles have significant fundamental and practical implications on the electronic response of graphene and their knowledge is essential for tailoring upcoming graphene-based plasmonic devices.

10.
J Phys Condens Matter ; 25(30): 305001, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23765519

RESUMEN

High-resolution electron energy loss spectroscopy is used to study the electronic properties of thin Ag layers on Ni(111). In addition to the ordinary surface plasmon at 3.8 eV, we observe a broad feature at 7-8 eV, whose nature is investigated as a function of scattering geometry and primary electron beam energy. Loss measurements unambiguously indicate that this mode has spectral components from both free-electron Ag plasmonic excitations (free-electron surface plasmons and multipole plasmons) and single-particle transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA