Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 110(9): 1483-1497.e7, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35263617

RESUMEN

Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.


Asunto(s)
Proteínas de Transporte de Neurotransmisores , Vesículas Sinápticas , Animales , Mamíferos , Proteínas de Transporte de Membrana , Neurotransmisores , Sinapsis , Vesículas Sinápticas/fisiología , Proteína 1 de Transporte Vesicular de Glutamato
2.
Biophys J ; 113(7): 1383-1394, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978433

RESUMEN

Genome dynamics are intimately linked to the regulation of gene expression, the most fundamental mechanism in biology, yet we still do not know whether the very process of transcription drives spatial organization at specific gene loci. Here, we have optimized the ANCHOR/ParB DNA-labeling system for real-time imaging of a single-copy, estrogen-inducible transgene in human cells. Motion of an ANCHOR3-tagged DNA locus was recorded in the same cell before and during the appearance of nascent MS2-labeled mRNA. We found that transcription initiation by RNA polymerase 2 resulted in confinement of the mRNA-producing gene domain within minutes. Transcription-induced confinement occurred in each single cell independently of initial, highly heterogeneous mobility. Constrained mobility was maintained even when inhibiting polymerase elongation. Chromatin motion at constant step size within a largely confined area hence leads to increased collisions that are compatible with the formation of gene-specific chromatin domains, and reflect the assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription.


Asunto(s)
Ciclina D1/biosíntesis , Transcripción Genética , Línea Celular Tumoral , Cromatina/metabolismo , Ciclina D1/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Sitios Genéticos , Humanos , Microscopía Fluorescente , Imagen Molecular , Movimiento (Física) , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Espectrometría de Fluorescencia , Transfección , Transgenes
3.
Biophys J ; 94(4): 1203-15, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17921221

RESUMEN

Experimental studies have demonstrated that Ca(2+)-regulated proteins are sensitive to the frequency of Ca(2+) oscillations, and several mathematical models for specific proteins have provided insight into the mechanisms involved. Because of the large number of Ca(2+)-regulated proteins in signal transduction, metabolism and gene expression, it is desirable to establish in general terms which molecular properties shape the response to oscillatory Ca(2+) signals. Here we address this question by analyzing in detail a model of a prototypical Ca(2+)-decoding module, consisting of a target protein whose activity is controlled by a Ca(2+)-activated kinase and the counteracting phosphatase. We show that this module can decode the frequency of Ca(2+) oscillations, at constant average Ca(2+) signal, provided that the Ca(2+) spikes are narrow and the oscillation frequency is sufficiently low--of the order of the phosphatase rate constant or below. Moreover, Ca(2+) oscillations activate the target more efficiently than a constant signal when Ca(2+) is bound cooperatively and with low affinity. Thus, the rate constants and the Ca(2+) affinities of the target-modifying enzymes can be tuned in such a way that the module responds optimally to Ca(2+) spikes of a certain amplitude and frequency. Frequency sensitivity is further enhanced when the limited duration of the external stimulus driving Ca(2+) signaling is accounted for. Thus, our study identifies molecular parameters that may be involved in establishing the specificity of cellular responses downstream of Ca(2+) oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Modelos Biológicos , Oscilometría/métodos , Fosfotransferasas/metabolismo , Simulación por Computador , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...