Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Brain ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481354

RESUMEN

Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009-2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome and whole genome sequencing (WGS), and latterly WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100,000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre, and has benefitted from the use of WGS, particularly access to the raw data. However, almost one quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.

2.
Eur J Neurol ; 31(5): e16199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409938

RESUMEN

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary neuropathy worldwide and classically has slow nerve conduction velocity (NCV), in most cases below 38 m/s. Two unrelated patients with motor NCVs in the upper limbs above 38 m/s are reported. METHOD: Case report. RESULTS: Two genetically confirmed CMT1A patients are presented, from two unrelated families (one of British origin and the other of Brazilian origin). Both individuals had upper limb motor NCVs above 38 m/s, with values ranging from 41.9 to 45 m/s in the median nerve and from 42 to 42.3 m/s in the ulnar nerve. They presented with a very mild phenotype, with CMT Neuropathy Score version 2 (CMTNSv2) of 6 and 5, respectively. In contrast, affected family members within both kinships exhibited a classical phenotype with more severe disease manifestation (CMTNSv2 ranging from 12 to 20) and motor NCVs below 30 m/s. CONCLUSION: These cases, although very rare, highlight the importance of testing PMP22 duplication in patients with intermediate conduction velocities.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Fenotipo , Conducción Nerviosa , Nervio Mediano , Familia
3.
Mov Disord ; 39(3): 486-497, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38197134

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES: Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS: We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS: Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS: These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Linaje , Ataxias Espinocerebelosas/genética , Ataxia Cerebelosa/genética , Exones , Proteínas de Homeodominio/genética
4.
Eur J Neurol ; 31(1): e16063, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772343

RESUMEN

BACKGROUND AND PURPOSE: Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. METHODS: Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot-Marie-Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. RESULTS: The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. DISCUSSION: In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy.


Asunto(s)
Catarata , Enfermedad de Charcot-Marie-Tooth , Cristalinas , Humanos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación/genética , Pruebas Genéticas , Fenotipo , Cristalinas/genética , Catarata/genética , Linaje
5.
J Peripher Nerv Syst ; 29(1): 111-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38131667

RESUMEN

AIM: X-linked variants in Filamin A (FLNA) are associated with the Ehlers-Danlos-syndrome-variant form of periventricular heterotopia, and autosomal dominant variants in ubiquitin C-terminal hydrolase L1 (UCHL1) are associated with a late-onset spastic ataxia, peripheral neuropathy and optic atrophy. Here we present a rare case involving both a novel heterozygous whole-gene deletion of UCHL1 and a heterozygous frameshift variant in the FLNA gene resulting in a complex phenotype. METHODS: A 67-year-old female with a confirmed pathogenic variant in the FLNA gene, resulting in an enlarged aorta and joint pains, presented with a 4-year history of severe sensory ataxia, upper motor neuron signs, eye movement abnormalities and severe sensory loss. RESULTS: Neurophysiology including Somatosensory-evoked potentials confirmed the sensory loss as predominantly preganglionic with denervation. Genetic testing revealed a digenic cause of her complex presentation, confirming a pathogenic frameshift variant in the FLNA gene and a heterozygous loss of function deletion in the UCHL1 gene. CONCLUSIONS: To the best of our knowledge, this is the first case with concomitant pathogenic variants in the FLNA and UCHL1 genes which explain the complex phenotype. The severe preganglionic sensory loss is also a rare finding and expands the phenotype of UCHL1 variants.


Asunto(s)
Síndrome de Ehlers-Danlos , Humanos , Femenino , Anciano , Filaminas/genética , Mutación , Fenotipo , Síndrome de Ehlers-Danlos/genética , Heterocigoto , Ubiquitina Tiolesterasa/genética
6.
Biomolecules ; 13(11)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002249

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is the second most common muscular dystrophy in adults, and it is associated with local D4Z4 chromatin relaxation, mostly via the contraction of the D4Z4 macrosatellite repeat array on chromosome 4q35. In this study, we aimed to investigate the use of Optical Genome Mapping (OGM) as a diagnostic tool for testing FSHD cases from the UK and India and to compare OGM performance with that of traditional techniques such as linear gel (LGE) and Pulsed-field gel electrophoresis (PFGE) Southern blotting (SB). A total of 6 confirmed and 19 suspected FSHD samples were processed with LGE and PFGE, respectively. The same samples were run using a Saphyr Genome-Imaging Instrument (1-color), and the data were analysed using custom EnFocus FSHD analysis. OGM was able to confirm the diagnosis of FSHD1 in all FSHD1 cases positive for SB (n = 17), and D4Z4 sizing highly correlated with PFGE-SB (p < 0.001). OGM correctly identified cases with mosaicism for the repeat array contraction (n = 2) and with a duplication of the D4Z4 repeat array. OGM is a promising new technology able to unravel structural variants in the genome and seems to be a valid tool for diagnosing FSHD1.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Adulto , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Electroforesis en Gel de Campo Pulsado , Mapeo Cromosómico , India
7.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37642407

RESUMEN

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450567

RESUMEN

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Síndrome , Enfermedades Vestibulares , Humanos , Vestibulopatía Bilateral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
9.
Brain ; 146(10): 4336-4349, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37284795

RESUMEN

Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Femenino , Humanos , Masculino , Enfermedad de Charcot-Marie-Tooth/patología , Conexinas/genética , Mutación/genética , Mutación Missense , Fenotipo , Proteína beta1 de Unión Comunicante
10.
Brain ; 146(10): 4025-4032, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37337674

RESUMEN

Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , MicroARNs , Humanos , Enfermedad de Charcot-Marie-Tooth/patología , MicroARNs/genética , Variaciones en el Número de Copia de ADN , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Expresión Génica
11.
Brain ; 146(7): 2723-2729, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797998

RESUMEN

CAG repeat expansions in exon 1 of the AR gene on the X chromosome cause spinal and bulbar muscular atrophy, a male-specific progressive neuromuscular disorder associated with a variety of extra-neurological symptoms. The disease has a reported male prevalence of approximately 1:30 000 or less, but the AR repeat expansion frequency is unknown. We established a pipeline, which combines the use of the ExpansionHunter tool and visual validation, to detect AR CAG expansion on whole-genome sequencing data, benchmarked it to fragment PCR sizing, and applied it to 74 277 unrelated individuals from four large cohorts. Our pipeline showed sensitivity of 100% [95% confidence interval (CI) 90.8-100%], specificity of 99% (95% CI 94.2-99.7%), and a positive predictive value of 97.4% (95% CI 84.4-99.6%). We found the mutation frequency to be 1:3182 (95% CI 1:2309-1:4386, n = 117 734) X chromosomes-10 times more frequent than the reported disease prevalence. Modelling using the novel mutation frequency led to estimate disease prevalence of 1:6887 males, more than four times more frequent than the reported disease prevalence. This discrepancy is possibly due to underdiagnosis of this neuromuscular condition, reduced penetrance, and/or pleomorphic clinical manifestations.


Asunto(s)
Atrofia Muscular Espinal , Receptores Androgénicos , Humanos , Masculino , Receptores Androgénicos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular , Reacción en Cadena de la Polimerasa , Expansión de Repetición de Trinucleótido/genética
12.
Eur J Hum Genet ; 31(2): 148-163, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513735

RESUMEN

Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Embarazo , Femenino , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Mitocondrias/genética
13.
Neurology ; 100(5): e543-e554, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36289003

RESUMEN

BACKGROUND AND OBJECTIVE: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult-onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the replication factor complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expand the genotypic spectrum of CANVAS by identifying sequence variants in RFC1-coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only 1 heterozygous (AAGGG)n expansion in RFC1 underwent whole-genome sequencing or whole-exome sequencing to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the effect of truncating variants on RFC1 expression, we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified 7 patients from 5 unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included the following: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6), and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. In addition, it sheds further light on the pathogenesis of RFC1 CANVAS because it supports the existence of a loss-of-function mechanism underlying this complex neurodegenerative condition.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Adulto , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Vestibulopatía Bilateral/genética , Vestibulopatía Bilateral/diagnóstico , Enfermedades Vestibulares/genética , Síndrome
16.
Lancet Neurol ; 21(3): 234-245, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182509

RESUMEN

BACKGROUND: Repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. METHODS: We retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013-17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. FINDINGS: The diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2-99·0) and 99·6% specificity (99·1-99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). INTERPRETATION: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. FUNDING: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina.


Asunto(s)
Expansión de las Repeticiones de ADN , Medicina Estatal , Niño , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Reino Unido , Secuenciación Completa del Genoma/métodos
17.
J Cell Mol Med ; 26(4): 1327-1331, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34951131

RESUMEN

The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies.


Asunto(s)
Degeneración Lobar Frontotemporal , Tauopatías , Proteínas tau , Astrocitos/metabolismo , Humanos , Mutación/genética , Isoformas de Proteínas/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
18.
J Neurol Neurosurg Psychiatry ; 93(1): 48-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518334

RESUMEN

OBJECTIVE: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS: In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS: This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Filamentos Intermedios/genética , Adulto , Exones , Femenino , Genotipo , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Neurofilamentos/genética , Neuronas , Linaje , Fenotipo , Nervio Sural , Adulto Joven
19.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299126

RESUMEN

Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.


Asunto(s)
Ataxia de Friedreich/epidemiología , Ataxia de Friedreich/genética , Fenotipo , Expansión de Repetición de Trinucleótido , Adolescente , Adulto , Factores de Edad , Edad de Inicio , Niño , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Reino Unido/epidemiología , Adulto Joven
20.
Neurobiol Aging ; 106: 343.e1-343.e8, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274155

RESUMEN

We report the first clinical-radiological-genetic-molecular-pathological study of a kindred with c.823-10G>T MAPT intronic variant (rs63749974) associated with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We describe the clinical spectrum within this family and emphasize the association between MAPT gene variants and motor neuron disease. This report of a second family with FTDP-17 associated with c.823-10G>T MAPT variant strongly supports pathogenicity of the variant and confirms it is a 4-repeat (4R) tauopathy. This intronic point mutation, probably strengthens the polypyrimidine tract and alters the splicing of exon 10 (10 nucleotides into intron 9) close to the 3' splice site.


Asunto(s)
Exones/genética , Demencia Frontotemporal/genética , Estudios de Asociación Genética/métodos , Heterocigoto , Intrones/genética , Trastornos Parkinsonianos/genética , Mutación Puntual/genética , Proteínas tau/genética , Anciano , Encéfalo/diagnóstico por imagen , Cromosomas Humanos Par 17/genética , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Neuroimagen , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Tauopatías/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...