Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34806752

RESUMEN

Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating drugs. Here, we monitored cell cycle progression at a resolution of minutes to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour of mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and its increased accumulation at mitochondria from mid-S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival after apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Apoptosis , Transducción de Señal , Ciclo Celular , Línea Celular Tumoral , Humanos , Mitosis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF
2.
PLoS Comput Biol ; 16(6): e1007812, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497127

RESUMEN

Apoptotic cell death can be initiated through the extrinsic and intrinsic signaling pathways. While cell cycle progression promotes the responsiveness to intrinsic apoptosis induced by genotoxic stress or spindle poisons, this has not yet been studied conclusively for extrinsic apoptosis. Here, we combined fluorescence-based time-lapse monitoring of cell cycle progression and cell death execution by long-term time-lapse microscopy with sampling-based mathematical modeling to study cell cycle dependency of TRAIL-induced extrinsic apoptosis in NCI-H460/geminin cells. In particular, we investigated the interaction of cell death timing and progression of cell cycle states. We not only found that TRAIL prolongs cycle progression, but in reverse also that cell cycle progression affects the kinetics of TRAIL-induced apoptosis: Cells exposed to TRAIL in G1 died significantly faster than cells stimulated in S/G2/M. The connection between cell cycle state and apoptosis progression was captured by developing a mathematical model, for which parameter estimation revealed that apoptosis progression decelerates in the second half of the cell cycle. Similar results were also obtained when studying HCT-116 cells. Our results therefore reject the null hypothesis of independence between cell cycle progression and extrinsic apoptosis and, supported by simulations and experiments of synchronized cell populations, suggest that unwanted escape from TRAIL-induced apoptosis can be reduced by enriching the fraction of cells in G1 phase. Besides novel insight into the interrelation of cell cycle progression and extrinsic apoptosis signaling kinetics, our findings are therefore also relevant for optimizing future TRAIL-based treatment strategies.


Asunto(s)
Apoptosis , Ciclo Celular , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Transducción de Señal , Algoritmos , Teorema de Bayes , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Geminina/química , Células HCT116 , Humanos , Cinética , Modelos Estadísticos
3.
Cell Death Differ ; 27(11): 3037-3052, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32433558

RESUMEN

The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Esferoides Celulares/patología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Celecoxib/farmacología , Línea Celular Tumoral , Inhibidores de la Ciclooxigenasa 2/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
4.
Sci Rep ; 10(1): 3619, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107427

RESUMEN

Modern cytometry methods allow collecting complex, multi-dimensional data sets from heterogeneous cell populations at single-cell resolution. While methods exist to describe the progression and order of cellular processes from snapshots of such populations, these descriptions are limited to arbitrary pseudotime scales. Here we describe MAPiT, an universal transformation method that recovers real-time dynamics of cellular processes from pseudotime scales by utilising knowledge of the distributions on the real scales. As use cases, we applied MAPiT to two prominent problems in the flow-cytometric analysis of heterogeneous cell populations: (1) recovering the kinetics of cell cycle progression in unsynchronised and thus unperturbed cell populations, and (2) recovering the spatial arrangement of cells within multi-cellular spheroids prior to spheroid dissociation for cytometric analysis. Since MAPiT provides a theoretic basis for the relation of pseudotime values to real temporal and spatial scales, it can be used broadly in the analysis of cellular processes with snapshot data from heterogeneous cell populations.


Asunto(s)
Células/citología , Análisis de la Célula Individual/métodos , Recuento de Células , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Citometría de Flujo , Humanos , Cinética , Esferoides Celulares/citología
5.
PLoS One ; 13(6): e0198203, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29927992

RESUMEN

Dysregulation of the mitochondrial signaling pathway of apoptosis induction represents a major hurdle in tumor therapy. The objective of the presented work was to investigate the role of the intrinsic (mitochondrial) apoptotic pathway in the non-small lung cancer cell line NCI-H460 upon induction of apoptosis using the highly bioactive TRAIL derivative Db-scTRAIL. NCI-H460 cells were TRAIL sensitive but an only about 3 fold overexpression of Bcl-2 was sufficient to induce a highly TRAIL resistant phenotype, confirming that the mitochondrial pathway is crucial for TRAIL-induced apoptosis induction. TRAIL resistance was paralleled by a strong inhibition of caspase-8, -9 and -3 activities and blocked their full processing. Notably, especially the final cleavage steps of the initiator caspase-8 and the executioner caspase-3 were effectively blocked by Bcl-2 overexpression. Caspase-9 knockdown failed to protect NCI-H460 cells from TRAIL-induced cell death, suggesting a minor role of this initiator caspase in this apoptotic pathway. Rather, knockdown of the XIAP antagonist Smac resulted in enhanced caspase-3 degradation after stimulation of cells with TRAIL. Of note, downregulation of XIAP had only limited effects on TRAIL sensitivity of wild-type NCI-H460 cells, but resensitized Bcl-2 overexpressing cells for TRAIL-induced apoptosis. In particular, XIAP knockdown in combination with TRAIL allowed the final cleavage step of caspase-3 to generate the catalytically active p17 fragment, whose production was otherwise blocked in Bcl-2 overexpressing cells. Together, our data strongly suggest that XIAP-mediated inhibition of final caspase-3 processing is the last and major hurdle in TRAIL-induced apoptosis in NCI-H460 cells, which can be overcome by Smac in a Bcl-2 level dependent manner. Quantitative investigation of the XIAP/Smac interplay using a mathematical model approach corroborates our experimental data strengthening the suggested roles of XIAP and Smac as critical determinants for TRAIL sensitivity.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Caspasas/metabolismo , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasas/genética , Células HCT116 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(5): 1386-91, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605906

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.


Asunto(s)
Evolución Biológica , Calmodulina/metabolismo , NADP/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Células HeLa , Humanos , Hibridación in Situ , Reacción en Cadena de la Polimerasa , Xenopus/embriología
7.
Bioconjug Chem ; 25(5): 879-87, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24766622

RESUMEN

The TNF-related apoptosis-inducing ligand (TRAIL) is a powerful inducer of apoptosis in tumor cells; however, clinical studies with recombinant soluble TRAIL were rather disappointing. Here, we developed TRAIL-functionalized liposomes (LipoTRAIL, LT) to mimic membrane-displayed TRAIL for efficient activation of death receptors DR4 and DR5 and enhanced induction of apoptosis, which were combined with an anti-EGFR single-chain Fv fragment (scFv) for targeted delivery to EGFR-positive tumor cells. These immuno-LipoTRAILs (ILTs) bound specifically to EGFR-expressing cells (Colo205) and exhibited increased cytotoxicity compared with that of nontargeted LTs. Compared to that of the soluble TRAIL, the plasma half-life of the functionalized liposomes was strongly extended, and increased antitumor activity of LT and ILT was demonstrated in a xenograft tumor model. Thus, we established a multifunctional liposomal TRAIL formulation (ILT) with improved pharmacokinetic and pharmacodynamic behavior, characterized by targeted delivery and increased induction of apoptosis due to multivalent TRAIL presentation.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Liposomas/inmunología , Nanopartículas/química , Neoplasias Experimentales/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Animales , Antineoplásicos/química , Antineoplásicos/inmunología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Liposomas/química , Ratones , Ratones Endogámicos , Ratones Desnudos , Modelos Moleculares , Neoplasias Experimentales/patología , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie , Ligando Inductor de Apoptosis Relacionado con TNF/química
8.
J Biol Chem ; 289(23): 16576-87, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24764293

RESUMEN

The cytokine TNF-related apoptosis-inducing ligand (TRAIL) and its cell membrane receptors constitute an elaborate signaling system fulfilling important functions in immune regulation and tumor surveillance. Activation of the death receptors TRAILR1 and TRAILR2 can lead to apoptosis, whereas TRAILR3 and TRAILR4 are generally referred to as decoy receptors, which have been shown to inhibit TRAIL-induced apoptosis. The underlying molecular mechanisms, however, remain unclear. Alike other members of the TNF receptor superfamily, TRAIL receptors contain a pre-ligand binding assembly domain (PLAD) mediating receptor oligomerization. Still, the stoichiometry of TRAIL receptor oligomers as well as the issue of whether the PLAD mediates only homotypic or also heterotypic interactions remained inconclusive until now. Performing acceptor-photobleaching FRET studies with receptors 1, 2, and 4, we demonstrate interactions in all possible combinations. Formation of dimers was shown by chemical cross-linking experiments for interactions of TRAILR2 and heterophilic interactions between the two death receptors or between either of the death receptors and TRAILR4. Implications of the demonstrated receptor-receptor interactions on signaling were investigated in suitable cellular models. Both apoptosis induction and activation of the transcription factor NFκB were significantly reduced in the presence of TRAILR4. Our experimental data combined with mathematical modeling show that the inhibitory capacity of TRAILR4 is attributable to signaling-independent mechanisms, strongly suggesting a reduction of signaling competent death receptors through formation heteromeric receptor complexes. In summary, we propose a model of TRAIL receptor interference driven by PLAD-mediated formation of receptor heterodimers on the cell membrane.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Transducción de Señal , Apoptosis , Dimerización , Células HeLa , Humanos
9.
J Biol Chem ; 282(46): 33562-33571, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17855339

RESUMEN

NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress.


Asunto(s)
NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Línea Celular , Regulación hacia Abajo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sensibilidad y Especificidad
10.
Biochem J ; 402(2): 205-18, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17295611

RESUMEN

The pyridine nucleotides NAD and NADP play vital roles in metabolic conversions as signal transducers and in cellular defence systems. Both coenzymes participate as electron carriers in energy transduction and biosynthetic processes. Their oxidized forms, NAD+ and NADP+, have been identified as important elements of regulatory pathways. In particular, NAD+ serves as a substrate for ADP-ribosylation reactions and for the Sir2 family of NAD+-dependent protein deacetylases as well as a precursor of the calcium mobilizing molecule cADPr (cyclic ADP-ribose). The conversions of NADP+ into the 2'-phosphorylated form of cADPr or to its nicotinic acid derivative, NAADP, also result in the formation of potent intracellular calcium-signalling agents. Perhaps, the most critical function of NADP is in the maintenance of a pool of reducing equivalents which is essential to counteract oxidative damage and for other detoxifying reactions. It is well known that the NADPH/NADP+ ratio is usually kept high, in favour of the reduced form. Research within the past few years has revealed important insights into how the NADPH pool is generated and maintained in different subcellular compartments. Moreover, tremendous progress in the molecular characterization of NAD kinases has established these enzymes as vital factors for cell survival. In the present review, we summarize recent advances in the understanding of the biosynthesis and signalling functions of NAD(P) and highlight the new insights into the molecular mechanisms of NADPH generation and their roles in cell physiology.


Asunto(s)
NADP/metabolismo , NAD/metabolismo , Animales , Humanos , NAD/química , NADP/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...