Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 7(17): 4705-4720, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36753606

RESUMEN

Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the ß-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in ß-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.


Asunto(s)
Espectrina , Esferocitosis Hereditaria , Humanos , Espectrina/genética , Espectrina/metabolismo , Septinas/genética , Septinas/metabolismo , Esplenectomía , Ancirinas/genética , Ancirinas/metabolismo , Esferocitosis Hereditaria/cirugía , Esferocitosis Hereditaria/genética , Eritrocitos/metabolismo
2.
Biomolecules ; 10(8)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751168

RESUMEN

Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.


Asunto(s)
Eliptocitosis Hereditaria/patología , Membrana Eritrocítica/patología , Eritrocitos/patología , Colesterol/análisis , Colesterol/metabolismo , Eliptocitosis Hereditaria/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/química , Eritrocitos/metabolismo , Humanos , Lisofosfolípidos/análisis , Lisofosfolípidos/metabolismo , Fluidez de la Membrana , Microdominios de Membrana/química , Microdominios de Membrana/patología , Estrés Oxidativo
3.
Front Physiol ; 11: 712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719614

RESUMEN

The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).

4.
Cell Physiol Biochem ; 51(4): 1544-1565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30497064

RESUMEN

BACKGROUND/AIMS: Red blood cells (RBC) have been shown to exhibit stable submicrometric lipid domains enriched in cholesterol (chol), sphingomyelin (SM), phosphatidylcholine (PC) or ganglioside GM1, which represent the four main lipid classes of their outer plasma membrane leaflet. However, whether those lipid domains co-exist at the RBC surface or are spatially related and whether and how they are subjected to reorganization upon RBC deformation are not known. METHODS: Using fluorescence and/or confocal microscopy and well-validated probes, we compared these four lipid-enriched domains for their abundance, curvature association, lipid order, temperature dependence, spatial dissociation and sensitivity to RBC mechanical stimulation. RESULTS: Our data suggest that three populations of lipid domains with decreasing abundance coexist at the RBC surface: (i) chol-enriched ones, associated with RBC high curvature areas; (ii) GM1/PC/chol-enriched ones, present in low curvature areas; and (iii) SM/PC/chol-enriched ones, also found in low curvature areas. Whereas chol-enriched domains gather in increased curvature areas upon RBC deformation, low curvature-associated lipid domains increase in abundance either upon calcium influx during RBC deformation (GM1/PC/chol-enriched domains) or upon secondary calcium efflux during RBC shape restoration (SM/PC/chol-enriched domains). Hence, abrogation of these two domain populations is accompanied by a strong impairment of the intracellular calcium balance. CONCLUSION: Lipid domains could contribute to calcium influx and efflux by controlling the membrane distribution and/or the activity of the mechano-activated ion channel Piezo1 and the calcium pump PMCA. Whether this results from lipid domain biophysical properties, the strength of their anchorage to the underlying cytoskeleton and/or their correspondence with inner plasma membrane leaflet lipids remains to be demonstrated.


Asunto(s)
Colesterol/análisis , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Gangliósido G(M1)/análisis , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/análisis , Fenómenos Biomecánicos , Forma de la Célula , Colesterol/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/ultraestructura , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Gangliósido G(M1)/metabolismo , Humanos , Canales Iónicos/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/ultraestructura , Fosfatidilcolinas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
5.
Biomolecules ; 8(3)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223513

RESUMEN

Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.


Asunto(s)
Vesículas Extracelulares/metabolismo , Microdominios de Membrana/metabolismo , Animales , Fenómenos Biofísicos , Humanos , Modelos Biológicos
6.
Cell Physiol Biochem ; 48(6): 2563-2582, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30121671

RESUMEN

BACKGROUND/AIMS: Transient nanometric cholesterol- and sphingolipid-enriched domains, called rafts, are characterized by higher lipid order as compared to surrounding lipids. Here, we asked whether the seminal concept of highly ordered rafts could be refined with the presence of lipid domains exhibiting different enrichment in cholesterol and sphingomyelin and association with erythrocyte curvature areas. We also investigated how differences in lipid order between domains and surrounding membrane (bulk) are regulated and whether changes in order differences could participate to erythrocyte deformation and vesiculation. METHODS: We used the fluorescent hydration- and membrane packing-sensitive probe Laurdan to determine by imaging mode the Generalized Polarization (GP) values of lipid domains vs the surrounding membrane. RESULTS: Laurdan revealed the majority of sphingomyelin-enriched domains associated to low erythrocyte curvature areas and part of the cholesterol-enriched domains associated with high curvature. Both lipid domains were less ordered than the surrounding lipids in erythrocytes at resting state. Upon erythrocyte deformation (elliptocytes and stimulation of calcium exchanges) or membrane vesiculation (storage at 4°C), lipid domains became more ordered than the bulk. Upon aging and in membrane fragility diseases (spherocytosis), an increase in the difference of lipid order between domains and the surrounding lipids contributed to the initiation of domain vesiculation. CONCLUSION: The critical role of domain-bulk differential lipid order modulation for erythrocyte reshaping is discussed in relation with the pressure exerted by the cytoskeleton on the membrane.


Asunto(s)
Eritrocitos/química , Microdominios de Membrana/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Colesterol/metabolismo , Deformación Eritrocítica , Eritrocitos/citología , Eritrocitos/metabolismo , Humanos , Lauratos/química , Microdominios de Membrana/metabolismo , Microscopía Confocal , Microscopía de Fluorescencia por Excitación Multifotónica , Esfingomielinas/química , Esfingomielinas/metabolismo
7.
Prog Lipid Res ; 62: 1-24, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26738447

RESUMEN

The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.


Asunto(s)
Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Modelos Biológicos , Células Procariotas/metabolismo , Levaduras/metabolismo
8.
Cell Mol Life Sci ; 72(23): 4633-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26077601

RESUMEN

Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.


Asunto(s)
Colesterol/metabolismo , Membrana Eritrocítica/metabolismo , Microdominios de Membrana/metabolismo , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Compuestos de Boro/química , Compuestos de Boro/metabolismo , Línea Celular , Membrana Eritrocítica/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Microdominios de Membrana/química , Ratones , Mioblastos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Temperatura
9.
J Lipid Res ; 55(7): 1331-42, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24826836

RESUMEN

We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of (125)I-lysenin* binding to erythrocytes upon SM depletion by SMase. The (125)I-lysenin* binding isotherm indicated saturation at 3.5 × 10(6) molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub-micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.


Asunto(s)
Membrana Eritrocítica/metabolismo , Microdominios de Membrana/metabolismo , Esfingomielinas/farmacología , Humanos , Esfingomielinas/metabolismo , Toxinas Biológicas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...