Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38664959

RESUMEN

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Asunto(s)
Inmunidad Adaptativa , Adyuvantes Inmunológicos , Inmunidad Innata , Modelos Animales , Desarrollo de Vacunas , Vacunas , Pez Cebra , Pez Cebra/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Humanos , Vacunas/inmunología , Vacunas/administración & dosificación , Vacunología/métodos
2.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518375

RESUMEN

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Ratones , Animales , ARN , Distribución Tisular , Enfermedad de Chagas/prevención & control , Antígenos de Protozoos/genética , ARN Mensajero , Tecnología
3.
Expert Rev Vaccines ; 23(1): 174-185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164690

RESUMEN

INTRODUCTION: Pseudoviruses are recombinant, replication-incompetent, viral particles designed to mimic the surface characteristics of native enveloped viruses. They are a safer, and cost-effective research alternative to live viruses. With the potential emergence of the next major infectious disease, more vaccine scientists must become familiar with the pseudovirus platform as a vaccine development tool to mitigate future outbreaks. AREAS COVERED: This review aims at vaccine developers to provide a basic understanding of pseudoviruses, list their production methods, and discuss their utility to assess vaccine efficacy against enveloped viral pathogens. We further illustrate their usefulness as wet-lab simulators for emerging mutant variants, and new viruses to help prepare for current and future viral outbreaks, minimizing the need for gain-of-function experiments with highly infectious or lethal enveloped viruses. EXPERT OPINION: With this platform, researchers can better understand the role of virus-receptor interactions and entry in infections, prepare for dangerous mutations, and develop effective vaccines.


Asunto(s)
Vacunas , Virus , Humanos , Desarrollo de Vacunas , Anticuerpos Antivirales
4.
Am J Vet Res ; 85(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056076

RESUMEN

OBJECTIVE: Design and evaluate immune responses of neonatal foals to a mRNA vaccine expressing the virulence-associated protein A (VapA) of Rhodococcus equi. ANIMALS: Cultured primary equine respiratory tract cells; Serum, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from 30 healthy Quarter Horse foals. METHODS: VapA expression was evaluated by western immunoblot in cultured equine bronchial cells transfected with 4 mRNA constructs encoding VapA. The mRNA construct with greatest expression was used to immunize foals at ages 2 and 21 days in 5 groups: (1) 300 µg nebulized mRNA (n = 6); (2) 600 µg nebulized mRNA (n = 4); (3) 300 µg mRNA administered intramuscularly (IM) (n = 5); (4) 300 µg VapA IM (positive controls; n = 6); or (5) nebulized water (negative controls; n = 6). Serum, BALF, and PBMCs were collected at ages 3, 22, and 35 days and tested for relative anti-VapA IgG1, IgG4/7, and IgA activities using ELISA and cell-mediated immunity by ELISpot. RESULTS: As formulated, nebulized mRNA was not immunogenic. However, a significant increase in anti-VapA IgG4/7 activity (P < .05) was noted exclusively in foals immunized IM with VapA mRNA by age 35 days. The proportion of foals with anti-VapA IgG1 activity > 30% of positive control differed significantly (P = .0441) between negative controls (50%; 3/6), IM mRNA foals (100%; 5/5), and IM VapA (100%; 6/6) groups. Natural exposure to virulent R equi was immunogenic in some negative control foals. CLINICAL RELEVANCE: Further evaluation of the immunogenicity and efficacy of IM mRNA encoding VapA in foals is warranted.


Asunto(s)
Infecciones por Actinomycetales , Enfermedades de los Caballos , Rhodococcus equi , Animales , Caballos , Animales Recién Nacidos , Inmunidad Humoral , Vacunas de ARNm , Proteínas Bacterianas/genética , Rhodococcus equi/genética , Leucocitos Mononucleares , Inmunoglobulina G , ARN Mensajero/genética , Infecciones por Actinomycetales/prevención & control , Infecciones por Actinomycetales/veterinaria , Enfermedades de los Caballos/prevención & control , Factores de Virulencia/genética
5.
PLoS Negl Trop Dis ; 17(11): e0011519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37988389

RESUMEN

BACKGROUND: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/ 5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS: These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Hepatomegalia/tratamiento farmacológico , Infección Persistente , PPAR alfa/farmacología , PPAR alfa/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/prevención & control , Enfermedad de Chagas/parasitología , Tripanocidas/farmacología
6.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37896960

RESUMEN

(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen.

7.
Nat Commun ; 14(1): 6769, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880260

RESUMEN

Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Corazón , Progresión de la Enfermedad
8.
Curr Res Immunol ; 4: 100066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534309

RESUMEN

Tc24 is a Trypanosoma cruzi-derived flagellar protein that, when formulated with a TLR-4 agonist adjuvant, induces a balanced immune response in mice, elevating IgG2a antibody titers and IFN-γ levels. Furthermore, vaccination with the recombinant Tc24 protein can reduce parasite levels and improve survival during acute infection. Although some mRNA vaccines have been proven to elicit a stronger immune response than some protein vaccines, they have not been used against T. cruzi. This work evaluates the immunogenicity of a heterologous prime/boost vaccination regimen using protein and mRNA-based Tc24 vaccines. Mice (C57BL/6) were vaccinated twice subcutaneously, three weeks apart, with either the Tc24-C4 protein + glucopyranosyl A (GLA)-squalene emulsion, Tc24 mRNA Lipid Nanoparticles, or with heterologous protein/mRNA or mRNA/protein combinations, respectively. Two weeks after the last vaccination, mice were euthanized, spleens were collected to measure antigen-specific T-cell responses, and sera were collected to evaluate IgG titers and isotypes. Heterologous presentation of the Tc24 antigen generated antigen-specific polyfunctional CD8+ T cells, a balanced Th1/Th2/Th17 cytokine profile, and a balanced humoral response with increased serum IgG, IgG1 and IgG2c antibody responses. We conclude that heterologous vaccination using Tc24 mRNA to prime and Tc24-C4 protein to boost induces a broad and robust antigen-specific immune response that was equivalent or superior to two doses of a homologous protein vaccine, the homologous mRNA vaccine and the heterologous Tc24-C4 Protein/mRNA vaccine.

9.
Commun Chem ; 6(1): 164, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542196

RESUMEN

The development of SARS-CoV-2 main protease (Mpro) inhibitors for the treatment of COVID-19 has mostly benefitted from X-ray structures and preexisting knowledge of inhibitors; however, an efficient method to generate Mpro inhibitors, which circumvents such information would be advantageous. As an alternative approach, we show here that DNA-encoded chemistry technology (DEC-Tec) can be used to discover inhibitors of Mpro. An affinity selection of a 4-billion-membered DNA-encoded chemical library (DECL) using Mpro as bait produces novel non-covalent and non-peptide-based small molecule inhibitors of Mpro with low nanomolar Ki values. Furthermore, these compounds demonstrate efficacy against mutant forms of Mpro that have shown resistance to the standard-of-care drug nirmatrelvir. Overall, this work demonstrates that DEC-Tec can efficiently generate novel and potent inhibitors without preliminary chemical or structural information.

10.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503013

RESUMEN

Background: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions: These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.

11.
Am J Vet Res ; 84(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442546

RESUMEN

OBJECTIVE: To examine the susceptibility of cultured primary equine bronchial epithelial cells (EBECs) to a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus relative to human bronchial epithelial cells (HBECs). SAMPLE: Primary EBEC cultures established from healthy adult horses and commercially sourced human bronchial epithelial cells (HBECs) were used as a positive control. METHODS: Angiotensin-converting enzyme 2 (ACE2) expression by EBECs was demonstrated using immunofluorescence, western immunoblot, and flow cytometry. EBECs were transduced with a lentivirus pseudotyped with the SARS-CoV-2 spike protein that binds to ACE2 and expresses the enhanced green fluorescent protein (eGFP) as a reporter. Cells were transduced with the pseudovirus at a multiplicity of infection of 0.1 for 6 hours, washed, and maintained in media for 96 hours. After 96 hours, eGFP expression in EBECs was assessed by fluorescence microscopy of cell cultures and quantitative PCR. RESULTS: ACE2 expression in EBECs detected by immunofluorescence, western immunoblotting, and flow cytometry was lower in EBECs than in HBECs. After 96 hours, eGFP expression in EBECs was demonstrated by fluorescence microscopy, and mean ΔCt values from quantitative PCR were significantly (P < .0001) higher in EBECs (8.78) than HBECs (3.24) indicating lower infectivity in EBECs. CLINICAL RELEVANCE: Equine respiratory tract cells were susceptible to cell entry with a SARS-CoV-2 pseudovirus. Lower replication efficiency in EBECs suggests that horses are unlikely to be an important zoonotic host of SARS-CoV-2, but viral mutations could render some strains more infective to horses. Serological and virological monitoring of horses in contact with persons shedding SARS-CoV-2 is warranted.


Asunto(s)
COVID-19 , Enfermedades de los Caballos , Caballos , Animales , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Internalización del Virus , COVID-19/veterinaria , Células Epiteliales
12.
Expert Rev Vaccines ; 22(1): 495-500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252854

RESUMEN

INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.


Asunto(s)
COVID-19 , Saccharomyces cerevisiae , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tecnología , Proteínas Recombinantes/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes
13.
Front Cell Infect Microbiol ; 13: 1106315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844399

RESUMEN

Introduction: Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function. Methods: Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration. Results: Vaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A. Discussion: These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Infección Persistente , Enfermedad de Chagas/parasitología , Corazón , Proteínas Recombinantes
14.
Res Sq ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711878

RESUMEN

Post-infectious conditions, where clinical symptoms fail to resolve even after pathogen clearance, present major health burdens. However, the mechanisms involved remain poorly understood. In Chagas disease (CD), caused by the parasite Trypanosoma cruzi, antiparasitic agents can clear T. cruzi but late-stage treatment does not improve clinical cardiac outcomes. In this study, we revealed differential metabolic trajectories of cardiac regions during T. cruzi infection, matching sites of clinical symptoms. Incomplete, region-specific, cardiac metabolic restoration was observed in animals treated with the antiparasitic benznidazole, even though parasites were successfully cleared. In contrast, superior metabolic restoration was observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy (Tc24-C4 T. cruzi flagellar protein and TLR4 agonist adjuvant), even though parasite burden reduction was lower. Overall, these results provide a mechanism to explain prior clinical treatment failures in CD and to test novel candidate treatment regimens. More broadly, our results demonstrate a link between persistent metabolic perturbation and post-infectious conditions, with broad implications for our understanding of post-infectious disease sequelae.

15.
Vaccine ; 40(45): 6445-6449, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36184402

RESUMEN

About 6.5 million people worldwide are afflicted by Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. The development of a therapeutic vaccine to prevent the progression of Chagasic cardiomyopathy has been proposed as an alternative for antiparasitic chemotherapy. Bioinformatics tools can predict MHC class I CD8 + epitopes for inclusion in a single recombinant protein with the goal to develop a multivalent vaccine. We expressed a novel recombinant protein Tc24-C4.10E harboring ten nonameric CD8 + epitopes and using Tc24-C4 protein as scaffold to evaluate the therapeutic effect in acute T. cruzi infection. T. cruzi-infected mice were immunized with Tc24-C4.10E or Tc24-C4 in a 50-day model of acute infection. Tc24-C4.10E-treated mice showed a decreased parasitemia compared to the Tc24-C4 (non-adjuvant) immunized mice or control group. Moreover, Tc24-C4.10E induced a higher stimulation index of CD8 + T cells producing IFNγ and IL-4 cytokines. These results suggest that the addition of the MHC Class I epitopes to Tc24-C4 can synergize the antigen-specific cellular immune responses, providing proof-of-concept that this approach could lead to the development of a promising vaccine candidate for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Ratones , Anticuerpos Antiprotozoarios , Antiparasitarios/uso terapéutico , Linfocitos T CD8-positivos , Enfermedad de Chagas/prevención & control , Citocinas , Epítopos , Interleucina-4 , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos , Proteínas Recombinantes , Trypanosoma cruzi/inmunología , Vacunas Combinadas
16.
Vaccine ; 40(26): 3655-3663, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568591

RESUMEN

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum + CpG. We also evaluated mice immunized with RBD/alum + CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum + CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum + CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2, including variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Compuestos de Alumbre , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Inmunización Pasiva , Ratones , Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
17.
Protein Expr Purif ; 190: 106003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34688919

RESUMEN

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Asunto(s)
Vacunas contra la COVID-19 , Expresión Génica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/farmacología , Humanos , Ratones , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , SARS-CoV-2/química , SARS-CoV-2/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/farmacología
18.
bioRxiv ; 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-34268512

RESUMEN

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General of India. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.

19.
PLoS Negl Trop Dis ; 15(9): e0009689, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478444

RESUMEN

Tc24-C4, a modified recombinant flagellar calcium-binding protein of Trypanosoma cruzi, is under development as a therapeutic subunit vaccine candidate to prevent or delay progression of chronic Chagasic cardiomyopathy. When combined with Toll-like receptor agonists, Tc24-C4 immunization reduces parasitemia, parasites in cardiac tissue, and cardiac fibrosis and inflammation in animal models. To support further research on the vaccine candidate and its mechanism of action, murine monoclonal antibodies (mAbs) against Tc24-C4 were generated. Here, we report new findings made with mAb Tc24-C4/884 that detects Tc24-WT and Tc24-C4, as well as native Tc24 in T. cruzi on ELISA, western blots, and different imaging techniques. Surprisingly, detection of Tc24 by Tc24-C/884 in fixed T. cruzi trypomastigotes required permeabilization of the parasite, revealing that Tc24 is not exposed on the surface of T. cruzi, making a direct role of antibodies in the induced protection after Tc24-C4 immunization less likely. We further observed that after immunostaining T. cruzi-infected cells with mAb Tc24-C4/884, the expression of Tc24 decreases significantly when T. cruzi trypomastigotes enter host cells and transform into amastigotes. However, Tc24 is then upregulated in association with parasite flagellar growth linked to re-transformation into the trypomastigote form, prior to host cellular escape. These observations are discussed in the context of potential mechanisms of vaccine immunity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , ARN Protozoario/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Anticuerpos Monoclonales , Linfocitos B , Enfermedad de Chagas/parasitología , Femenino , Humanos , Hibridomas , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos , ARN Protozoario/genética , Trypanosoma cruzi/genética
20.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34426525

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [Ki] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (Ki = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (Ki = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , COVID-19/virología , Células Cultivadas , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ingeniería Genética , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , SARS-CoV-2/metabolismo , Relación Estructura-Actividad , Replicación Viral , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...