Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2142, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459070

RESUMEN

Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.


Asunto(s)
Neuronas , Células Piramidales , Neuronas/metabolismo , Células Piramidales/fisiología , Hipocampo , Axones/metabolismo , Mitocondrias/metabolismo , Dendritas/fisiología
2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464058

RESUMEN

Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new 'place fields'. Distal tuft dendrites are thought to initiate place field formation via plateau potentials. However, the hitherto experimental inaccessibility of this dendritic compartment has rendered its in vivo function entirely unknown. We report that distal tuft dendrites are variably recruited during place field formation in mouse area CA1. This variability predicts place field information content and may account for the unique and unexplained association window underpinning place field formation. Surprisingly, tuft-associated plateau potentials primarily occur during subsequent place field traversals and may serve a maintenance function alongside robust local spatial tuning. Our findings represent a significant advance toward a mechanistic, subcellular understanding of memory formation in the hippocampus.

3.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405915

RESUMEN

In neurons of the mammalian central nervous system (CNS), axonal mitochondria are thought to be indispensable for supplying ATP during energy-consuming processes such as neurotransmitter release. Here, we demonstrate using multiple, independent, in vitro and in vivo approaches that the majority (~80-90%) of axonal mitochondria in cortical pyramidal neurons (CPNs), lack mitochondrial DNA (mtDNA). Using dynamic, optical imaging analysis of genetically encoded sensors for mitochondrial matrix ATP and pH, we demonstrate that in axons of CPNs, but not in their dendrites, mitochondrial complex V (ATP synthase) functions in a reverse way, consuming ATP and protruding H+ out of the matrix to maintain mitochondrial membrane potential. Our results demonstrate that in mammalian CPNs, axonal mitochondria do not play a major role in ATP supply, despite playing other functions critical to regulating neurotransmission such as Ca2+ buffering.

4.
bioRxiv ; 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36993655

RESUMEN

Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly in the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a new activity-dependent molecular mechanism underlying the extreme subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise regulation of mitochondria fission/fusion balance.

5.
Neuron ; 111(6): 839-856.e5, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924763

RESUMEN

mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in polarized, elongated cells. These features are especially prominent in radial glial cells (RGCs), which are neural and glial precursors of the developing cerebral cortex and scaffolds for migrating neurons. Yet the mechanisms by which subcellular RGC compartments accomplish their diverse functions are poorly understood. Here, we demonstrate that mRNA localization and local translation of the RhoGAP ARHGAP11A in the basal endfeet of RGCs control their morphology and mediate neuronal positioning. Arhgap11a transcript and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by the 5' UTR. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to the basal endfeet, where ARHGAP11A is locally synthesized. This translation is essential for positioning interneurons at the basement membrane. Thus, local translation spatially and acutely activates Rho signaling in RGCs to compartmentalize neural progenitor functions.


Asunto(s)
Células Ependimogliales , Neuroglía , Humanos , Ratones , Animales , Células Ependimogliales/metabolismo , ARN Mensajero/metabolismo , Neuroglía/metabolismo , Neurogénesis , Corteza Cerebral , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo
6.
Nat Rev Neurosci ; 24(4): 213-232, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36792753

RESUMEN

The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.


Asunto(s)
Corteza Cerebral , Neurogénesis , Humanos , Corteza Cerebral/fisiología , Encéfalo
7.
Sci Adv ; 8(45): eabo7956, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367943

RESUMEN

Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Ratones , Fosforilación , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Mamíferos/metabolismo
8.
Nat Commun ; 13(1): 4444, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915085

RESUMEN

During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.


Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Fragmentos de Péptidos , Sinapsis/metabolismo
9.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35831024

RESUMEN

Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid ß42 (Aß42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.


Asunto(s)
Péptidos beta-Amiloides , Proteínas de Drosophila , Drosophila melanogaster , Retículo Endoplásmico , Mitocondrias , Fragmentos de Péptidos , Enfermedad de Alzheimer , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Aptitud Genética , Locomoción/efectos de los fármacos , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/toxicidad
10.
Science ; 375(6586): eabm1670, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298275

RESUMEN

Dendritic calcium signaling is central to neural plasticity mechanisms that allow animals to adapt to the environment. Intracellular calcium release (ICR) from the endoplasmic reticulum has long been thought to shape these mechanisms. However, ICR has not been investigated in mammalian neurons in vivo. We combined electroporation of single CA1 pyramidal neurons, simultaneous imaging of dendritic and somatic activity during spatial navigation, optogenetic place field induction, and acute genetic augmentation of ICR cytosolic impact to reveal that ICR supports the establishment of dendritic feature selectivity and shapes integrative properties determining output-level receptive fields. This role for ICR was more prominent in apical than in basal dendrites. Thus, ICR cooperates with circuit-level architecture in vivo to promote the emergence of behaviorally relevant plasticity in a compartment-specific manner.


Asunto(s)
Región CA1 Hipocampal/fisiología , Calcio/metabolismo , Dendritas/fisiología , Retículo Endoplásmico/metabolismo , Plasticidad Neuronal , Células de Lugar/fisiología , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Señalización del Calcio , Citosol/metabolismo , Electroporación , Femenino , Masculino , Ratones , Optogenética , Análisis de la Célula Individual , Navegación Espacial
11.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216674

RESUMEN

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Asunto(s)
Neocórtex , Animales , Ratones , Microscopía Electrónica , Neocórtex/fisiología , Orgánulos , Células Piramidales/fisiología , Sinapsis/fisiología
13.
Neuron ; 110(5): 783-794.e6, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990571

RESUMEN

Hippocampal place cells underlie spatial navigation and memory. Remarkably, CA1 pyramidal neurons can form new place fields within a single trial by undergoing rapid plasticity. However, local feedback circuits likely restrict the rapid recruitment of individual neurons into ensemble representations. This interaction between circuit dynamics and rapid feature coding remains unexplored. Here, we developed "all-optical" approaches combining novel optogenetic induction of rapidly forming place fields with 2-photon activity imaging during spatial navigation in mice. We find that induction efficacy depends strongly on the density of co-activated neurons. Place fields can be reliably induced in single cells, but induction fails during co-activation of larger subpopulations due to local circuit constraints imposed by recurrent inhibition. Temporary relief of local inhibition permits the simultaneous induction of place fields in larger ensembles. We demonstrate the behavioral implications of these dynamics, showing that our ensemble place field induction protocol can enhance subsequent spatial association learning.


Asunto(s)
Hipocampo , Células de Lugar , Animales , Región CA1 Hipocampal/fisiología , Retroalimentación , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Células Piramidales/fisiología
14.
Nature ; 601(7891): 105-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853473

RESUMEN

Local circuit architecture facilitates the emergence of feature selectivity in the cerebral cortex1. In the hippocampus, it remains unknown whether local computations supported by specific connectivity motifs2 regulate the spatial receptive fields of pyramidal cells3. Here we developed an in vivo electroporation method for monosynaptic retrograde tracing4 and optogenetics manipulation at single-cell resolution to interrogate the dynamic interaction of place cells with their microcircuitry during navigation. We found a local circuit mechanism in CA1 whereby the spatial tuning of an individual place cell can propagate to a functionally recurrent subnetwork5 to which it belongs. The emergence of place fields in individual neurons led to the development of inverse selectivity in a subset of their presynaptic interneurons, and recruited functionally coupled place cells at that location. Thus, the spatial selectivity of single CA1 neurons is amplified through local circuit plasticity to enable effective multi-neuronal representations that can flexibly scale environmental features locally without degrading the feedforward input structure.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Vías Nerviosas , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Linaje de la Célula , Electroporación , Femenino , Interneuronas/fisiología , Masculino , Ratones , Inhibición Neural , Optogenética , Células de Lugar/fisiología , Terminales Presinápticos/metabolismo , Células Piramidales/fisiología , Análisis de la Célula Individual
15.
Nature ; 599(7886): 640-644, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707291

RESUMEN

The cognitive abilities that characterize humans are thought to emerge from unique features of the cortical circuit architecture of the human brain, which include increased cortico-cortical connectivity. However, the evolutionary origin of these changes in connectivity and how they affected cortical circuit function and behaviour are currently unknown. The human-specific gene duplication SRGAP2C emerged in the ancestral genome of the Homo lineage before the major phase of increase in brain size1,2. SRGAP2C expression in mice increases the density of excitatory and inhibitory synapses received by layer 2/3 pyramidal neurons (PNs)3-5. Here we show that the increased number of excitatory synapses received by layer 2/3 PNs induced by SRGAP2C expression originates from a specific increase in local and long-range cortico-cortical connections. Mice humanized for SRGAP2C expression in all cortical PNs displayed a shift in the fraction of layer 2/3 PNs activated by sensory stimulation and an enhanced ability to learn a cortex-dependent sensory-discrimination task. Computational modelling revealed that the increased layer 4 to layer 2/3 connectivity induced by SRGAP2C expression explains some of the key changes in sensory coding properties. These results suggest that the emergence of SRGAP2C at the birth of the Homo lineage contributed to the evolution of specific structural and functional features of cortical circuits in the human cortex.


Asunto(s)
Corteza Cerebral , Vías Nerviosas , Animales , Femenino , Humanos , Masculino , Ratones , Señalización del Calcio , Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Discriminación en Psicología , Ratones Transgénicos , Vías Nerviosas/fisiología , Tamaño de los Órganos , Células Piramidales/fisiología , Sinapsis/metabolismo
16.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686348

RESUMEN

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Lugar/metabolismo , Receptores Inmunológicos/genética , Proteínas Roundabout
17.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384519

RESUMEN

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Asunto(s)
Proteínas del Dominio Armadillo/biosíntesis , Axones/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Drosophila/biosíntesis , Evolución Molecular , Morfogénesis/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Embarazo , Proteínas Serina-Treonina Quinasas/genética
18.
Cell Rep ; 35(2): 108952, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852851

RESUMEN

The mechanisms controlling the post-natal maturation of astrocytes play a crucial role in ensuring correct synaptogenesis. We show that mitochondrial biogenesis in developing astrocytes is necessary for coordinating post-natal astrocyte maturation and synaptogenesis. The astrocytic mitochondrial biogenesis depends on the transient upregulation of metabolic regulator peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), which is controlled by metabotropic glutamate receptor 5 (mGluR5). At tissue level, the loss or downregulation of astrocytic PGC-1α sustains astrocyte proliferation, dampens astrocyte morphogenesis, and impairs the formation and function of neighboring synapses, whereas its genetic re-expression is sufficient to restore the mitochondria compartment and correct astroglial and synaptic defects. Our findings show that the developmental enhancement of mitochondrial biogenesis in astrocytes is a critical mechanism controlling astrocyte maturation and supporting synaptogenesis, thus suggesting that astrocytic mitochondria may be a therapeutic target in the case of neurodevelopmental and psychiatric disorders characterized by impaired synaptogenesis.


Asunto(s)
Astrocitos/metabolismo , Mitocondrias/genética , Neurogénesis/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptor del Glutamato Metabotropico 5/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Astrocitos/citología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cultivo Primario de Células , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/genética , Sinapsis/ultraestructura
19.
Curr Opin Neurobiol ; 66: 205-211, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421713

RESUMEN

Synaptic connectivity within neural circuits is characterized by high degrees of cellular and subcellular specificity. This precision arises from the combined action of several classes of molecular cues, transmembrane receptors, secreted cues and extracellular matrix components, coordinating transitions between axon guidance, dendrite patterning, axon branching and synapse specificity. We focus this review on recent insights into some of the molecular and cellular mechanisms controlling these transitions and present the results of large-scale efforts and technological developments aimed at mapping neural connectivity at single cell resolution in the mouse cortex as a mammalian model organism. Finally, we outline some of the technical and conceptual challenges lying ahead as the field is starting to explore one of the most challenging problems in neuroscience: the molecular and cellular logic underlying the emergence of the connectome characterizing specific circuits within the central nervous system of mammals.


Asunto(s)
Conectoma , Sinapsis , Animales , Orientación del Axón , Señales (Psicología) , Ratones
20.
Front Neural Circuits ; 15: 787164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069126

RESUMEN

One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.


Asunto(s)
Neuronas , Primates , Animales , Humanos , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...