Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Med Imaging Radiat Oncol ; 62(1): 133-139, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29405637

RESUMEN

INTRODUCTION: Irregular breathing motion exacerbates uncertainties throughout a course of radiation therapy. Breathing guidance has demonstrated to improve breathing motion consistency. This was the first clinical implementation of audiovisual biofeedback (AVB) breathing guidance over a course of liver stereotactic body radiotherapy (SBRT) investigating interfraction reproducibility. METHODS: Five liver cancer patients underwent a screening procedure prior to CT sim during which patients underwent breathing conditions (i) AVB, or (ii) free breathing (FB). Whichever breathing condition was more regular was utilised for the patient's subsequent course of SBRT. Respiratory motion was obtained from the Varian respiratory position monitoring (RPM) system (Varian Medical Systems). Breathing motion reproducibility was assessed by the variance of displacement across 10 phase-based respiratory bins over each patient's course of SBRT. RESULTS: The screening procedure yielded the decision to utilise AVB for three patients and FB for two patients. Over the course of SBRT, AVB significantly improved the relative interfraction motion by 32%, from 22% displacement difference for FB patients to 15% difference for AVB patients. Further to this, AVB facilitated sub-millimetre interfraction reproducibility for two AVB patients. CONCLUSION: There was significantly less interfraction motion with AVB than FB. These findings demonstrate that AVB is potentially a valuable tool in ensuring reproducible interfraction motion.


Asunto(s)
Biorretroalimentación Psicológica , Neoplasias Hepáticas/radioterapia , Radiocirugia/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Femenino , Humanos , Masculino , Movimiento , Reproducibilidad de los Resultados
2.
Adv Radiat Oncol ; 2(3): 354-362, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29114603

RESUMEN

PURPOSE: Respiratory variation can increase the variability of tumor position and volume, accounting for larger treatment margins and longer treatment times. Audiovisual biofeedback as a breath-hold technique could be used to improve the reproducibility of lung tumor positions at inhalation and exhalation for the radiation therapy of mobile lung tumors. This study aimed to assess the impact of audiovisual biofeedback breath-hold (AVBH) on interfraction lung tumor position reproducibility and volume consistency for respiratory-gated lung cancer radiation therapy. METHODS: Lung tumor position and volume were investigated in 9 patients with lung cancer who underwent a breath-hold training session with AVBH before 2 magnetic resonance imaging (MRI) sessions. During the first MRI session (before treatment), inhalation and exhalation breath-hold 3-dimensional MRI scans with conventional breath-hold (CBH) using audio instructions alone and AVBH were acquired. The second MRI session (midtreatment) was repeated within 6 weeks after the first session. Gross tumor volumes (GTVs) were contoured on each dataset. CBH and AVBH were compared in terms of tumor position reproducibility as assessed by GTV centroid position and position range (defined as the distance of GTV centroid position between inhalation and exhalation) and tumor volume consistency as assessed by GTV between inhalation and exhalation. RESULTS: Compared with CBH, AVBH improved the reproducibility of interfraction GTV centroid position by 46% (P = .009) from 8.8 mm to 4.8 mm and GTV position range by 69% (P = .052) from 7.4 mm to 2.3 mm. Compared with CBH, AVBH also improved the consistency of intrafraction GTVs by 70% (P = .023) from 7.8 cm3 to 2.5 cm3. CONCLUSIONS: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

3.
Phys Med Biol ; 61(17): 6485-501, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27523908

RESUMEN

Two interventions to overcome the deleterious impact irregular breathing has on thoracic-abdominal 4D computed tomography (4DCT) are (1) facilitating regular breathing using audiovisual biofeedback (AVB), and (2) prospective respiratory gating of the 4DCT scan based on the real-time respiratory motion. The purpose of this study was to compare the impact of AVB and gating on 4DCT imaging using the 4D eXtended cardiac torso (XCAT) phantom driven by patient breathing patterns. We obtained simultaneous measurements of chest and abdominal walls, thoracic diaphragm, and tumor motion from 6 lung cancer patients under two breathing conditions: (1) AVB, and (2) free breathing. The XCAT phantom was used to simulate 4DCT acquisitions in cine and respiratory gated modes. 4DCT image quality was quantified by artefact detection (NCCdiff), mean square error (MSE), and Dice similarity coefficient of lung and tumor volumes (DSClung, DSCtumor). 4DCT acquisition times and imaging dose were recorded. In cine mode, AVB improved NCCdiff, MSE, DSClung, and DSCtumor by 20% (p = 0.008), 23% (p < 0.001), 0.5% (p < 0.001), and 4.0% (p < 0.003), respectively. In respiratory gated mode, AVB improved NCCdiff, MSE, and DSClung by 29% (p < 0.001), 34% (p < 0.001), 0.4% (p < 0.001), respectively. AVB increased the cine acquisitions by 15 s and reduced respiratory gated acquisitions by 31 s. AVB increased imaging dose in cine mode by 10%. This was the first study to quantify the impact of breathing guidance and respiratory gating on 4DCT imaging. With the exception of DSCtumor in respiratory gated mode, AVB significantly improved 4DCT image analysis metrics in both cine and respiratory gated modes over free breathing. The results demonstrate that AVB and respiratory-gating can be beneficial interventions to improve 4DCT for cancer radiation therapy, with the biggest gains achieved when these interventions are used simultaneously.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Técnicas de Imagen Sincronizada Respiratorias/métodos , Artefactos , Humanos , Movimiento (Física) , Fantasmas de Imagen
4.
Radiother Oncol ; 120(2): 267-72, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256597

RESUMEN

BACKGROUND AND PURPOSE: The impact of audiovisual (AV) biofeedback on four dimensional (4D) positron emission tomography (PET) and 4D computed tomography (CT) image quality was investigated in a prospective clinical trial (NCT01172041). MATERIAL AND METHODS: 4D-PET and 4D-CT images of ten lung cancer patients were acquired with AV biofeedback (AV) and free breathing (FB). The 4D-PET images were analyzed for motion artifacts by comparing 4D to 3D PET for gross tumor volumes (GTVPET) and maximum standardized uptake values (SUVmax). The 4D-CT images were analyzed for artifacts by comparing normalized cross correlation-based scores (NCCS) and quantifying a visual assessment score (VAS). A Wilcoxon signed-ranks test was used for statistical testing. RESULTS: The impact of AV biofeedback varied widely. Overall, the 3D to 4D decrease of GTVPET was 1.2±1.3cm(3) with AV and 0.6±1.8cm(3) for FB. The 4D-PET increase of SUVmax was 1.3±0.9 with AV and 1.3±0.8 for FB. The 4D-CT NCCS were 0.65±0.27 with AV and 0.60±0.32 for FB (p=0.08). The 4D-CT VAS was 0.0±2.7. CONCLUSION: This study demonstrated a high patient dependence on the use of AV biofeedback to reduce motion artifacts in 4D imaging. None of the hypotheses tested were statistically significant. Future development of AV biofeedback will focus on optimizing the human-computer interface and including patient training sessions for improved comprehension and compliance.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Artefactos , Biorretroalimentación Psicológica , Humanos , Proyectos Piloto , Estudios Prospectivos , Mecánica Respiratoria/fisiología
5.
Med Phys ; 43(5): 2639, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27147373

RESUMEN

PURPOSE: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. METHODS: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. RESULTS: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. CONCLUSIONS: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.


Asunto(s)
Simulación por Computador , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración , Humanos , Pulmón/fisiopatología , Neoplasias Pulmonares/fisiopatología , Movimiento (Física)
6.
Int J Radiat Oncol Biol Phys ; 94(3): 628-36, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26867892

RESUMEN

PURPOSE: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. METHODS AND MATERIALS: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. RESULTS: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). CONCLUSIONS: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.


Asunto(s)
Retroalimentación Sensorial/fisiología , Neoplasias Pulmonares , Imagen por Resonancia Cinemagnética , Movimiento , Respiración , Humanos , Neoplasias Pulmonares/radioterapia
7.
Eur J Cardiothorac Surg ; 49(4): 1075-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26248634

RESUMEN

OBJECTIVES: In lung cancer preoperative evaluation, functional lung imaging is commonly used to assess lobar function. Computed tomography ventilation (CT-V) imaging is an emerging lung function imaging modality. We compared CT-V imaging assessment of lobar function and its prediction of postoperative lung function to that achieved by (i) positron emission tomography ventilation (PET-V) imaging and (ii) the standard anatomical segment counting (ASC) method. We hypothesized (i) that CT-V and PET-V have similar relative lobar function and (ii) that functional imaging and anatomic assessment (ASC) yield different predicted postoperative (ppo) lung function and therefore could change clinical management. METHODS: In this proof-of-concept study, 11 patients were subjected to pulmonary function tests, CT-V and PET-V imaging. The Bland-Altman plot, Pearson's correlation and linear regression analysis were used to assess the agreement between the CT-V-, PET-V- and ASC-based quantification of lobar function and in the ppo lung function. RESULTS: CT-V and PET-V imaging demonstrated strong correlations in quantifying relative lobar function (r = 0.96; P < 0.001). A Wilcoxon-signed rank test showed no significant difference in the lobar function estimates between the two imaging modalities (P = 0.83). The Bland-Altman plot also showed no significant differences. The correlation between ASC-based lobar function estimates with ventilation imaging was low, r < 0.45; however, the predictions of postoperative lung function correlated strongly between all three methods. CONCLUSIONS: The assessment of lobar function from CT-V imaging correlated strongly with PET-V imaging, but had low correlations with ASC. CT-V imaging may be a useful alternative method in preoperative evaluation for lung cancer patients.


Asunto(s)
Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/cirugía , Pulmón/fisiopatología , Neumonectomía/estadística & datos numéricos , Anciano , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Modelos Lineales , Pulmón/cirugía , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Periodo Posoperatorio , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X
8.
Med Phys ; 42(9): 5490-509, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26328997

RESUMEN

PURPOSE: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. METHODS: From August 1-14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. RESULTS: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. CONCLUSIONS: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the clinical impact of breathing guidance, along with the health technology assessment to determine the advantages and disadvantages of breathing guidance.


Asunto(s)
Voluntarios Sanos , Oncología por Radiación/métodos , Radiología/métodos , Respiración , Humanos , Neoplasias/diagnóstico , Neoplasias/fisiopatología , Neoplasias/radioterapia , Radioterapia Guiada por Imagen
9.
J Med Imaging Radiat Oncol ; 59(5): 654-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26247520

RESUMEN

This case report details a clinical trial's first recruited liver cancer patient who underwent a course of stereotactic body radiation therapy treatment utilising audiovisual biofeedback breathing guidance. Breathing motion results for both abdominal wall motion and tumour motion are included. Patient 1 demonstrated improved breathing motion regularity with audiovisual biofeedback. A training effect was also observed.


Asunto(s)
Contencion de la Respiración , Inmovilización/métodos , Neoplasias Hepáticas/cirugía , Posicionamiento del Paciente/métodos , Radiocirugia/métodos , Anciano , Recursos Audiovisuales , Biorretroalimentación Psicológica , Humanos , Masculino , Movimiento (Física) , Proyectos Piloto , Resultado del Tratamiento
10.
BMC Cancer ; 15: 526, 2015 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26187714

RESUMEN

BACKGROUND: There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. METHODS/DESIGN: To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this clinical trial is to assess the impact of audiovisual biofeedback on breathing motion, the patient experience and clinical confidence in the system, clinical workflow, treatment margins, and toxicity outcomes. DISCUSSION: This clinical trial marks an important milestone in breathing guidance studies as it will be the first randomised, controlled trial providing the most comprehensive evaluation of the clinical impact of breathing guidance on cancer radiation therapy to date. This study is powered to determine the impact of AV biofeedback on breathing regularity and medical image quality. Objectives such as determining the indications and contra-indications for the use of AV biofeedback, evaluation of patient experience, radiation toxicity occurrence and severity, and clinician confidence will shed light on the design of future phase III clinical trials. TRIAL REGISTRATION: This trial has been registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), its trial ID is ACTRN12613001177741 .


Asunto(s)
Biorretroalimentación Psicológica/instrumentación , Neoplasias Pulmonares/radioterapia , Técnicas de Imagen Sincronizada Respiratorias/métodos , Australia , Biorretroalimentación Psicológica/métodos , Humanos , Interpretación de Imagen Asistida por Computador/normas , Neoplasias Pulmonares/patología , Técnicas de Imagen Sincronizada Respiratorias/efectos adversos , Técnicas de Imagen Sincronizada Respiratorias/instrumentación , Encuestas y Cuestionarios , Resultado del Tratamiento
11.
Med Phys ; 41(7): 072304, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24989403

RESUMEN

PURPOSE: In this work, the authors present a novel magnetic resonance imaging reconstruction method to improve the quality of MR images in the presence of respiratory motion for real-time thoracic image-guided radiotherapy. METHODS: This new reconstruction method is called dynamic keyhole and utilizes a library of previously acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space acquisition (ground truth) for 60 coronal datasets acquired from 15 healthy human subjects. RESULTS: For the same image-quality difference from the ground-truth image, the dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time imaging applications. CONCLUSIONS: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of five compared with full k-space methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Respiración , Humanos , Tórax/anatomía & histología , Tórax/fisiología , Factores de Tiempo
12.
Australas Phys Eng Sci Med ; 37(1): 97-102, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24510249

RESUMEN

This study evaluated if an audiovisual (AV) biofeedback causes variation in the level of external and internal correlation due to its interactive intervention in natural breathing. The internal (diaphragm) and external (abdominal wall) respiratory motion signals of 15 healthy human subjects under AV biofeedback and free breathing (FB) were analyzed and measures of correlation and regularity taken. Regularity metrics (root mean square error and spectral power dispersion metric) were obtained and the correlation between these metrics and the internal and external correlation was investigated. For FB and AV biofeedback assisted breathing the mean correlations found between internal and external respiratory motion were 0.96±0.02 and 0.96±0.03, respectively. This means there is no evidence to suggest (p-value=0.88) any difference in the correlation between internal and external respiratory motion with the use of AV biofeedback. Our results confirmed the hypothesis that the internal-external correlation with AV biofeedback is the same as for free breathing. Should this correlation be maintained for patients, AV biofeedback can be implemented in the clinic with confidence as regularity improvements using AV biofeedback with an external signal will be reflected in increased internal motion regularity.


Asunto(s)
Biorretroalimentación Psicológica/métodos , Biorretroalimentación Psicológica/fisiología , Movimiento/fisiología , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración , Procesamiento de Señales Asistido por Computador , Adulto , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Controles Informales de la Sociedad , Adulto Joven
13.
Med Phys ; 40(4): 041705, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23556875

RESUMEN

PURPOSE: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. METHODS: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. RESULTS: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. CONCLUSIONS: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.


Asunto(s)
Biorretroalimentación Psicológica/métodos , Biorretroalimentación Psicológica/fisiología , Retroalimentación Sensorial/fisiología , Movimiento/fisiología , Posicionamiento del Paciente/métodos , Radioterapia Conformacional/métodos , Mecánica Respiratoria/fisiología , Estimulación Acústica/métodos , Algoritmos , Humanos , Estimulación Luminosa/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Med Phys ; 39(11): 6921-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23127085

RESUMEN

PURPOSE: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). METHODS: To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. RESULTS: The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm∕min with free breathing to 0.9 mm∕min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. CONCLUSIONS: This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.


Asunto(s)
Biorretroalimentación Psicológica , Diafragma/fisiología , Audición , Imagen por Resonancia Magnética/métodos , Movimiento , Visión Ocular , Abdomen/fisiología , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...