Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38894298

RESUMEN

Exploring data aids in the comprehension of the dataset and the system's essence. Various approaches exist for managing numerous sensors. This study perceives operational states to clarify the physical dynamics within a soil environment. Utilizing Principal Component Analysis (PCA) enables dimensionality reduction, offering an alternative perspective on the spring soil dataset. The K-means algorithm clusters data densities, forming the groundwork for an operational state description. Soil data, integral to an ecosystem, entails evident attributes. Employing dynamic visualization, including animations, constitutes a vital exploration angle. Greenhouse gas variables have been added to PCA to achieve more understanding in the interconnection of gas exchange and soil properties. Pit data and flux data are analysed both separately and together using a data-driven approach. The results look promising, showing the potential to add new values and more detailed state structures to ecological models. All experiments are conducted within the Jupyter programming environment, utilizing Python 3. The relevant literature on data visualization is examined. Through combined techniques and tools, the potential features of the soil ecosystem are observed and identified.

2.
New Phytol ; 242(6): 2440-2452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549455

RESUMEN

Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.


Asunto(s)
Sequías , Metano , Fotosíntesis , Pinus sylvestris , Brotes de la Planta , Pinus sylvestris/fisiología , Pinus sylvestris/metabolismo , Metano/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Aerobiosis , Temperatura , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Biomasa
3.
Proc Natl Acad Sci U S A ; 120(52): e2308516120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127980

RESUMEN

Methane emissions from plant foliage may play an important role in the global methane cycle, but their size and the underlying source processes remain poorly understood. Here, we quantify methane fluxes from the shoots of Scots pine trees, a dominant tree species in boreal forests, to identify source processes and environmental drivers, and we evaluate whether these fluxes can be constrained at the ecosystem-level by eddy covariance flux measurements. We show that shoot-level measurements conducted in forest, garden, or greenhouse settings; on mature trees and saplings; manually and with an automated CO2-, temperature-, and water-controlled chamber system; and with multiple methane analyzers all resulted in comparable daytime fluxes (0.144 ± 0.019 to 0.375 ± 0.074 nmol CH4 g-1 foliar d.w. h-1). We further find that these emissions exhibit a pronounced diurnal cycle that closely follows photosynthetically active radiation and is further modulated by temperature. These diurnal patterns indicate that methane production is associated with diurnal cycle of sunlight, indicating that this production is either a byproduct of photosynthesis-associated biochemical reactions (e.g., the methionine cycle) or produced through nonenzymatic photochemical reactions in plant biomass. Moreover, we identified a light-dependent component in stand-level methane fluxes, which showed order-of-magnitude agreement with shoot-level measurements (0.968 ± 0.031 nmol CH4 g-1 h-1) and which provides an upper limit for shoot methane emissions.


Asunto(s)
Ecosistema , Pinus sylvestris , Temperatura , Metano , Suelo , Bosques , Árboles , Dióxido de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...