Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(18): 16491-503, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454547

RESUMEN

The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.


Asunto(s)
Membrana Celular/enzimología , Mutación Missense , Multimerización de Proteína/fisiología , Quinasas raf/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Humanos , Estructura Terciaria de Proteína , Quinasas raf/genética
2.
J Biol Chem ; 286(20): 17934-44, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21317286

RESUMEN

BAD (Bcl-2 antagonist of cell death) belongs to the proapoptotic BH3-only subfamily of Bcl-2 proteins. Physiological activity of BAD is highly controlled by phosphorylation. To further analyze the regulation of BAD function, we investigated the role of recently identified phosphorylation sites on BAD-mediated apoptosis. We found that in contrast to the N-terminal phosphorylation sites, the serines 124 and 134 act in an antiapoptotic manner because the replacement by alanine led to enhanced cell death. Our results further indicate that RAF kinases represent, besides PAK1, BAD serine 134 phosphorylating kinases. Importantly, in the presence of wild type BAD, co-expression of survival kinases, such as RAF and PAK1, leads to a strongly increased proliferation, whereas substitution of serine 134 by alanine abolishes this process. Furthermore, we identified BAD serine 134 to be strongly involved in survival signaling of B-RAF-V600E-containing tumor cells and found that phosphorylation of BAD at this residue is critical for efficient proliferation in these cells. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation and its role in cancer signaling.


Asunto(s)
Apoptosis , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Sustitución de Aminoácidos , Supervivencia Celular/genética , Células HEK293 , Células HeLa , Humanos , Mutación Missense , Neoplasias/genética , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Proteína Letal Asociada a bcl/genética , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
3.
Biochim Biophys Acta ; 1810(2): 162-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21081150

RESUMEN

BACKGROUND: BAD protein (Bcl-2 antagonist of cell death) belongs to the BH3-only subfamily of proapoptotic proteins and is proposed to function as the sentinel of the cellular health status. Physiological activity of BAD is regulated by phosphorylation, association with 14-3-3 proteins, binding to membrane lipids and pore formation. Since the functional role of the BAD C-terminal part has not been considered so far, we have investigated here the interplay of the structure and function of this region. METHODS: The structure of the regulatory C-terminal part of human BAD was analyzed by CD spectroscopy. The channel-forming activity of full-length BAD and BAD peptides was carried out by lipid bilayer measurements. Interactions between proteins and peptides were monitored by the surface plasmon resonance technique. In aqueous solution, C-terminal part of BAD exhibits a well-ordered structure and stable conformation. In a lipid environment, the helical propensity considerably increases. The interaction of the C-terminal segment of BAD with the isolated BH3 domain results in the formation of permanently open pores whereby the phosphorylation of serine 118 within the BH3 domain is necessary for effective pore formation. In contrast, phosphorylation of serine 99 in combination with 14-3-3 association suppresses formation of channels. C-terminal part of BAD controls BAD function by structural transitions, lipid binding and phosphorylation. Conformational changes of this region upon membrane interaction in conjunction with phosphorylation of the BH3 domain suggest a novel mechanism for regulation of BAD. GENERAL SIGNIFICANCE: Multiple signaling pathways mediate inhibition and activation of cell death via BAD.


Asunto(s)
Membrana Dobles de Lípidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Proteína Letal Asociada a bcl/química , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Resonancia por Plasmón de Superficie , Agua/química , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
4.
Mol Cell Biol ; 30(19): 4698-711, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20679480

RESUMEN

The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser(259), a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS(259) crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer(259)/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animales , Sitios de Unión/genética , Línea Celular , Chlorocebus aethiops , Cristalización , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Microscopía Confocal , Modelos Moleculares , Mutación , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Serina/genética , Serina/metabolismo , Transfección , Proteínas ras/genética
6.
J Biol Chem ; 284(41): 28004-28020, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19667065

RESUMEN

BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-X(L) proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Proteína Letal Asociada a bcl/química , Proteína Letal Asociada a bcl/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Canales Iónicos/genética , Membrana Dobles de Lípidos/metabolismo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Alineación de Secuencia , Proteína Letal Asociada a bcl/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Quinasas p21 Activadas/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
7.
J Plant Physiol ; 166(10): 1057-68, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19261356

RESUMEN

Senescence of tobacco leaves is distributed non-uniformly over a leaf blade. While photosynthetic competence and expression of photosynthesis-associated genes decline in interveinal areas of the leaf lamina with advancing age of the leaf, they are maintained at high levels in the tissue surrounding the veins. In contrast, expression of senescence-associated genes (SAG) was enhanced in both areas of the leaf blade. Accumulation of hydrogen peroxide was shown to precede the phase of senescence initiation in the veinal tissue. In the interveinal tissue, the level of hydrogen peroxide was increased with senescence progression and paralleled by an increase in the level of superoxide anions. It is hypothesized that the spatial differences in superoxide anions are important for the non-uniform down-regulation of photosynthesis-associated genes (PAG), while hydrogen peroxide is responsible for up-regulation of SAG.


Asunto(s)
Senescencia Celular/fisiología , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Senescencia Celular/genética , Electroforesis en Gel de Poliacrilamida , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Peróxido de Hidrógeno/metabolismo , Immunoblotting , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxidos/metabolismo , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...