Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurology ; 103(1): e209496, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38870464

RESUMEN

BACKGROUND AND OBJECTIVES: Prolonged compound muscle action potential (CMAP) duration and preferential loss of myosin are considered the diagnostic hallmarks of critical illness myopathy (CIM); however, their correlation and prognostic values have not been studied. We aimed to investigate the correlation between CMAP duration and myosin loss and their effect on mortality by comparing between patients with CIM with and without myosin loss. METHODS: We searched the Mayo Clinic Electromyography Laboratory databases (1986-2021) for patients diagnosed with CIM on the basis of prolonged distal CMAP durations (>15 msec in fibular motor nerve studies recording over the tibialis anterior or >8 msec in other motor nerves) and needle EMG findings compatible with myopathy. Electrodiagnostic studies were generally performed within 24 hours after weakness became noticeable. We included only patients who underwent muscle biopsy. Clinical, electrophysiologic, and myopathologic data were reviewed. We conducted myosin/actin ratio analysis when muscle tissue was available. We used the Fisher exact test for categorical data comparisons and the Mann-Whitney 2-tailed test for continuous data. We applied the Kaplan-Meier technique to analyze survival rates. RESULTS: Twenty patients (13 female patients) were identified [median age at diagnosis of 62.5 years (range: 19-80 years)]. The median onset of weakness was 24 days (range: 1-128) from the first day of intensive care unit admission. Muscle biopsy showed myosin loss in 14 patients, 9 of whom had >50% of myofibers affected (high grade). Type 2 fiber atrophy was observed in 19 patients, 13 of whom also had myosin loss. Patients with myosin loss had higher frequency of steroid exposure (14 vs 3; p = 0.004); higher median number of necrotic fibers per low-power field (2.5 vs 1, p = 0.04); and longer median CMAP duration (msec) of fibular (13.4 vs 8.75, p = 0.02), tibial (10 vs 7.8, p = 0.01), and ulnar (11.1 vs 7.95, p = 0.002) nerves compared with those without. Only patients with high-grade myosin loss had reduced myosin/actin ratios (<1.7). Ten patients died during median follow-up of 3 months. The mortality rate was similar between patients with and without myosin loss. Patients with high-grade myosin loss had a lower overall survival rate than those with low-grade or no myosin loss, but this was not statistically significant (p = 0.05). DISCUSSION: Myosin loss occurred in 70% of the patients with CIM with prolonged CMAP duration. Longer CMAP duration predicts myosin-loss pathology. The extent of myosin loss marginally correlates with the mortality rate. Our findings highlight the potential prognostic values of CMAP duration and myosin loss severity in predicting disease outcome.


Asunto(s)
Potenciales de Acción , Enfermedad Crítica , Electromiografía , Músculo Esquelético , Enfermedades Musculares , Miosinas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Potenciales de Acción/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Enfermedades Musculares/metabolismo , Miosinas/metabolismo , Pronóstico , Estudios Retrospectivos , Adulto Joven
2.
Acta Neuropathol Commun ; 9(1): 79, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926564

RESUMEN

The MYH2 gene encodes the skeletal muscle myosin heavy chain IIA (MyHC-IIA) isoform, which is expressed in the fast twitch type 2A fibers. Autosomal dominant or recessive pathogenic variants in MYH2 lead to congenital myopathy clinically featured by ophthalmoparesis and predominantly proximal weakness. MYH2-myopathy is pathologically characterized by loss and atrophy of type 2A fibers. Additional myopathological abnormalities have included rimmed vacuoles containing small p62 positive inclusions, 15-20 nm tubulofilaments, minicores and dystrophic changes. We report an adult patient with late-pediatric onset MYH2-myopathy caused by two heterozygous pathogenic variants: c.3331C>T, p.Gln1111* predicted to result in truncation of the proximal tail region of MyHC-IIA, and c.1546T>G, p.Phe516Val, affecting a highly conserved amino acid within the highly conserved catalytic motor head relay loop. This missense variant is predicted to result in a less compact loop domain and in turn could affect the protein affinity state. The patient's genotype is accompanied by a novel myopathological phenotype characterized by centralized large myofilamentous tangles associated with clusters of nemaline rods, and ring fibers, in addition to the previously reported rimmed vacuoles, paucity and atrophy of type 2A fibers. Electron microscopy demonstrated wide areas of disorganized myofibrils which were oriented in various planes of direction and entrapped multiple nemaline rods, as corresponding to the large tangles with rods seen on light microscopy. Nemaline rods were rarely observed also in nuclei. We speculate that the mutated MyHC-IIA may influence myofibril disorganization. While nemaline rods have been described in myopathies caused by pathogenic variants in genes encoding several sarcomeric proteins, to our knowledge, nemaline rods have not been previously described in MYH2-myopathy.


Asunto(s)
Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Cadenas Pesadas de Miosina/genética , Fenotipo , Adulto , Humanos , Masculino , Cadenas Pesadas de Miosina/química , Estructura Secundaria de Proteína
3.
Stem Cell Res Ther ; 12(1): 187, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736701

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. METHODS: In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). RESULTS: Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. CONCLUSIONS: Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Citocinas , Humanos , Inmunomodulación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA