Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 15(4): e0353623, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38436569

RESUMEN

The oral commensal Fusobacterium nucleatum can spread to extra-oral sites, where it is associated with diverse pathologies, including pre-term birth and cancer. Due to the evolutionary distance of F. nucleatum to other model bacteria, we lack a deeper understanding of the RNA regulatory networks that allow this bacterium to adapt to its various niches. As a first step in that direction, we recently showed that F. nucleatum harbors a global stress response governed by the extracytoplasmic function sigma factor, σE, which displays a striking functional conservation with Proteobacteria and includes a noncoding arm in the form of a regulatory small RNA (sRNA), FoxI. To search for putative additional σE-dependent sRNAs, we comprehensively mapped the 5' and 3' ends of transcripts in the model strain ATCC 23726. This enabled the discovery of FoxJ, a ~156-nucleotide sRNA previously misannotated as the 5' untranslated region (UTR) of ylmH. FoxJ is tightly controlled by σE and activated by the same stress conditions as is FoxI. Both sRNAs act as mRNA repressors of the abundant porin FomA, but FoxJ also regulates genes that are distinct from the target suite of FoxI. Moreover, FoxJ differs from other σE-dependent sRNAs in that it also positively regulates genes at the post-transcriptional level. We provide preliminary evidence for a new mode of sRNA-mediated mRNA activation, which involves the targeting of intra-operonic terminators. Overall, our study provides an important resource through the comprehensive annotation of 5' and 3' UTRs in F. nucleatum and expands our understanding of the σE response in this evolutionarily distant bacterium.IMPORTANCEThe oral microbe Fusobacterium nucleatum can colonize secondary sites, including cancer tissue, and likely deploys complex regulatory systems to adapt to these new environments. These systems are largely unknown, partly due to the phylogenetic distance of F. nucleatum to other model organisms. Previously, we identified a global stress response mediated by σE that displays functional conservation with the envelope stress response in Proteobacteria, comprising a coding and noncoding regulatory arm. Through global identification of transcriptional start and stop sites, we uncovered the small RNA (sRNA) FoxJ as a novel component of the noncoding arm of the σE response in F. nucleatum. Together with its companion sRNA FoxI, FoxJ post-transcriptionally modulates the synthesis of envelope proteins, revealing a conserved function for σE-dependent sRNAs between Fusobacteriota and Proteobacteria. Moreover, FoxJ activates the gene expression for several targets, which is a mode of regulation previously unseen in the noncoding arm of the σE response.


Asunto(s)
Neoplasias , ARN Pequeño no Traducido , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Transcriptoma , Filogenia , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Bacterias/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Nucleic Acids Res ; 52(7): 3950-3970, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281181

RESUMEN

The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.


Asunto(s)
Proteínas Bacterianas , Fusobacterium nucleatum , ARN Bacteriano , ARN Pequeño no Traducido , Proteínas de Unión al ARN , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/química , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Espectrometría de Masas
3.
Proc Natl Acad Sci U S A ; 119(40): e2201460119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161895

RESUMEN

Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.


Asunto(s)
Fusobacterium nucleatum , Regulación Bacteriana de la Expresión Génica , Factor sigma , Estrés Fisiológico , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiología , Genes Reporteros , Proteína de Factor 1 del Huésped/genética , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Oxígeno , Filogenia , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Factor sigma/genética , Factor sigma/fisiología , Estrés Fisiológico/genética
4.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35388892

RESUMEN

Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs-processed 3' end fragments of mRNAs. Several such 3' end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3' end-derived sRNAs-their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3' end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.


Asunto(s)
ARN Bacteriano , ARN Pequeño no Traducido , Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769222

RESUMEN

Compelling evidence suggests that pyroglutamate-modified Aß (pGlu3-Aß; AßN3pG) peptides play a pivotal role in the development and progression of Alzheimer's disease (AD). Approaches targeting pGlu3-Aß by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aß-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16-41%) but statistically insignificant reduction of Aß42 and pGlu-Aß42 in mice brain, the combination of both treatments resulted in significant reductions of Aß by 45-65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aß in different compartments, the antibody is able to clear existing pGlu3-Aß deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aß-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales de Origen Murino/farmacología , Bencimidazoles/farmacología , Imidazolinas/farmacología , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Humanos , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/genética
6.
RNA ; 27(12): 1512-1527, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34497069

RESUMEN

The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mutagénesis , Proteasa La/metabolismo , Control de Calidad , ARN Bacteriano/genética , Proteínas de Unión al ARN/metabolismo , Salmonella enterica/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ARN/genética , Salmonella enterica/genética , Salmonella enterica/crecimiento & desarrollo
7.
Nat Microbiol ; 6(8): 1007-1020, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239075

RESUMEN

Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.


Asunto(s)
Infecciones por Fusobacterium/microbiología , Fusobacterium nucleatum/genética , Neoplasias/microbiología , ARN Bacteriano/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/crecimiento & desarrollo , Fusobacterium nucleatum/fisiología , Humanos , Porinas/genética , Porinas/metabolismo , ARN Bacteriano/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131082

RESUMEN

The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium.


Asunto(s)
Clostridioides difficile/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , Regiones no Traducidas 5'/genética , Clostridioides difficile/genética , Ambiente , Etanolamina/metabolismo , Genoma Bacteriano , Ligandos , Chaperonas Moleculares/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Operón/genética , Regiones Promotoras Genéticas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sitio de Iniciación de la Transcripción , Terminación de la Transcripción Genética , Transcriptoma/genética
9.
RNA Biol ; 18(8): 1099-1110, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33103565

RESUMEN

As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions.


Asunto(s)
Antibiosis/genética , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Genoma Viral , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ontología de Genes , Anotación de Secuencia Molecular , Fagos Pseudomonas/crecimiento & desarrollo , Fagos Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virología , ARN Viral/genética , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Transcriptoma
10.
Nat Commun ; 11(1): 3259, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591509

RESUMEN

Fusobacterium nucleatum is an oral anaerobe recently found to be prevalent in human colorectal cancer (CRC) where it is associated with poor treatment outcome. In mice, hematogenous F. nucleatum can colonize CRC tissue using its lectin Fap2, which attaches to tumor-displayed Gal-GalNAc. Here, we show that Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of F. nucleatum gDNA in breast cancer samples correlates with high Gal-GalNAc levels. We demonstrate Fap2-dependent binding of the bacterium to breast cancer samples, which is inhibited by GalNAc. Intravascularly inoculated Fap2-expressing F. nucleatum ATCC 23726 specifically colonize mice mammary tumors, whereas Fap2-deficient bacteria are impaired in tumor colonization. Inoculation with F. nucleatum suppresses accumulation of tumor infiltrating T cells and promotes tumor growth and metastatic progression, the latter two of which can be counteracted by antibiotic treatment. Thus, targeting F. nucleatum or Fap2 might be beneficial during treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/microbiología , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Fusobacterium nucleatum/crecimiento & desarrollo , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Recuento de Colonia Microbiana , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Femenino , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/genética , Galactosamina/metabolismo , Galactosa/metabolismo , Genoma Bacteriano/genética , Humanos , Inmunidad/efectos de los fármacos , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA