Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 12(4): e1305536, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318377

RESUMEN

Factors that affect the direction of root growth in response to environmental signals influence crop productivity. We analyzed the root tropic responses of thioredoxin (trxs), thigmotropic (wav2-1), and hydrotropic (ahr1 and nhr1) Arabidopsis thaliana mutants treated with low concentrations of paraquat (PQ), which induces mild oxidative stress, and established a new method for evaluating root waviness (root bending effort, RBE). This method estimates root bending by measuring and summing local curvature over the whole length of the root, regardless of the asymmetry of the wavy pattern under thigmostimulation. In roots of the wav2-1 mutant, but not in those of the trxs and ahr1 mutants, RBE was significantly inhibited under mild oxidative stress. Thigmotropic stimulation of wav2-1 mutant roots, with or without PQ treatment, showed high levels of reactive oxygen species fluorescence, in contrast to roots of the ahr1 mutant. Furthermore, PQ inhibited root growth in all genotypes tested, except in the wav2-1 mutant. In a hydrotropism assay of the trxs and wav2-1 mutants, root growth behavior was similar to the wild type with and without PQ, while the root growth of ahr1 and nhr1 mutants was diminished with PQ. These results indicate that hydrotropic and thigmotropic mutants respond differently to exogenous PQ, depending on the tropic stimulus perceived. Therefore, the mechanisms underlying hydrotropism and thigmotropism may differ.


Asunto(s)
Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gravitropismo/genética , Gravitropismo/fisiología , Oxidación-Reducción , Raíces de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
J Exp Bot ; 63(10): 3587-601, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442413

RESUMEN

Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Tropismo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
3.
J Exp Bot ; 62(13): 4661-73, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21652530

RESUMEN

Nodal roots (NRs) constitute the prevalent root system of adult maize plants. NRs emerge from stem nodes located below or above ground, and little is known about their inducing factors. Here, it is shown that precocious development of NRs at the coleoptilar node (NRCNs) occurred in maize seedlings when: (i) dark grown and stimulated by the concurrent action of a single light shock of low intensity white light (2 µmol m(-2) s(-1)) and a single heat shock; (ii) grown under a photoperiod of low intensity light (0.1 µmol m(-2) s(-1)); or (iii) grown in the dark under a thermoperiod (28 °C/34 °C). The light shock effects were synergistic with heat shock and with the photoperiod, whereas the thermoperiodical and photoperiodical effects were additive. Dissection of the primary root or the root cap, to mimic the fatal consequences of severe heat shock, caused negligible effects on NRCN formation, indicating that the shoot is directly involved in perception of the heat shock-inducible signal that triggered NRCN formation. A comparison between hsp101-m5::Mu1/hsp101-m5::Mu1 and Hsp101/Hsp101 seedlings indicated that the heat shock protein 101 (HSP101) chaperone inhibited NRCN formation in the light and in the dark. Stimulation of precocious NRCN formation by light and heat shocks was affected by genetic background and by the stage of seedling development. HSP101 protein levels increased in the coleoptilar node of induced wild-type plants, particularly in the procambial region, where NRCN formation originated. The adaptive relevance of development of NRCNs in response to these environmental cues and hypothetical mechanisms of regulation by HSP101 are discussed.


Asunto(s)
Cotiledón/crecimiento & desarrollo , Luz , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de la radiación , Temperatura , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Adaptación Fisiológica/efectos de la radiación , Cotiledón/efectos de la radiación , Oscuridad , Respuesta al Choque Térmico/efectos de la radiación , Inmunohistoquímica , Especificidad de Órganos/efectos de la radiación , Fotoperiodo , Cápsula de Raíz de Planta/fisiología , Cápsula de Raíz de Planta/efectos de la radiación , Raíces de Plantas/citología , Raíces de Plantas/efectos de la radiación , Plantones/crecimiento & desarrollo , Zea mays/embriología , Zea mays/efectos de la radiación
4.
Plant Signal Behav ; 3(7): 460-2, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19704485

RESUMEN

Hydrotropism, the differential growth of plant roots directed by a moisture gradient, is a long recognized, but not well-understood plant behavior. Hydrotropism has been characterized in the model plant Arabidopsis. Previously, it was postulated that roots subjected to water stress are capable of undergo water-directed tropic growth independent of the gravity vector because of the loss of the starch granules in root cap columella cells and hence the loss of the early steps in gravitropic signaling. We have recently proposed that starch degradation in these cells during hydrostimulation sustain osmotic stress and root growth for carrying out hydrotropism instead of reducing gravity responsiveness. In addition, we also proposed that abscisic acid (ABA) and water deficit are critical regulators of root gravitropism and hydrotropism, and thus mediate the interacting mechanism between these two tropisms. Our conclusions are based upon experiments performed with the no hydrotropic response (nhr1) mutant of Arabidopsis, which lacks a hydrotropic response and shows a stronger gravitropic response than that of wild type (WT) in a medium with an osmotic gradient.

5.
Plant Cell Environ ; 31(2): 205-17, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18047572

RESUMEN

Directed growth of roots in relation to a moisture gradient is called hydrotropism. The no hydrotropic response (nhr1) mutant of Arabidopsis lacks a hydrotropic response, and shows a stronger gravitropic response than that of wild type (wt) in a medium with an osmotic gradient. Local application of abscisic acid (ABA) to seeds or root tips of nhr1 increased root downward growth, indicating the critical role of ABA in tropisms. Wt roots germinated and treated with ABA in this system were strongly gravitropic, even though they had almost no starch amyloplasts in the root-cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in the amyloplasts, as opposed to those of wt. Hence, the near-absence (wt) or abundant presence (nhr1) of starch granules does not influence the extent of downward gravitropism of the roots in an osmotic gradient medium. Starch degradation in the wt might help the root sustain osmotic stress and carry out hydrotropism, instead of reducing gravity responsiveness. nhr1 roots might be hydrotropically inactive because they maintain this starch reserve in the columella cells, sustaining both their turgor and growth, and in effect minimizing the need for hydrotropism and at least partially disabling its mechanism. We conclude that ABA and water stress are critical regulators of root tropic responses.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/fisiología , Plastidios/metabolismo , Tropismo/fisiología , Agua/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Germinación/efectos de los fármacos , Gravitropismo/efectos de los fármacos , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Modelos Biológicos , Ósmosis , Penetrancia , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Plastidios/efectos de los fármacos , Plantones/citología , Plantones/efectos de los fármacos , Tropismo/efectos de los fármacos
6.
Plant Cell Environ ; 28(6): 719-32, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16010724

RESUMEN

Root caps (RCs) are the terminal tissues of higher plant roots. In the present study the factors controlling RC size, shape and structure were examined. It was found that this control involves interactions between the RC and an adjacent population of slowly dividing cells, the quiescent centre, QC. Using the polar auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA), the effects of QC activation on RC gene expression and border cell release was characterized. Ethylene was found to regulate RC size and cell differentiation, since its addition, or the inhibition of its synthesis, affected RC development. The stimulation of cell division in the QC following NPA treatment was reversed by ethylene, and quiescence was re-established. Moreover, inhibition of both ethylene synthesis and auxin polar transport triggered a new pattern of cell division in the root epidermis and led to the appearance of supernumerary epidermal cell files with cap-like characteristics. The data suggest that the QC ensures an ordered internal distribution of auxin, and thereby regulates not only the planes of growth and division in both the root apex proper and the RC meristem, but also regulates cell fate in the RC. Ethylene appears to regulate the auxin redistribution system that resides in the RC. Experiments with Arabidopsis roots also reveal that ethylene plays an important role in regulating the auxin sink, and consequently cell fate in the RC.


Asunto(s)
Etilenos/farmacología , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Cápsula de Raíz de Planta/citología , Cápsula de Raíz de Planta/efectos de los fármacos , Aminoácidos Cíclicos/farmacología , Aminobutiratos/farmacología , Arabidopsis , Transporte Biológico Activo/genética , Diferenciación Celular , División Celular/efectos de los fármacos , Interacciones Farmacológicas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mitosis/fisiología , Ftalimidas/farmacología , Epidermis de la Planta , Raíces de Plantas/crecimiento & desarrollo , Plantones , Zea mays
7.
Trends Plant Sci ; 10(1): 44-50, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15642523

RESUMEN

The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting world agriculture, there are surprisingly few studies on hydrotropism. Recent genetic analysis of hydrotropism in Arabidopsis has provided new insights about the mechanisms that the root cap uses to perceive and respond simultaneously to moisture and gravity signals. This knowledge might enable us to understand how the root cap processes environmental signals that are capable of regulating whole plant growth.


Asunto(s)
Cápsula de Raíz de Planta/crecimiento & desarrollo , Tropismo/fisiología , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo
8.
Plant Physiol ; 131(2): 536-46, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12586878

RESUMEN

For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Gravitropismo/fisiología , Raíces de Plantas/crecimiento & desarrollo , Agua/fisiología , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Gravitropismo/efectos de los fármacos , Gravitropismo/genética , Mutación , Ftalimidas/farmacología , Cápsula de Raíz de Planta/efectos de los fármacos , Cápsula de Raíz de Planta/genética , Cápsula de Raíz de Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Plant Cell ; 14(7): 1621-33, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12119379

RESUMEN

HSP101 belongs to the ClpB protein subfamily whose members promote the renaturation of protein aggregates and are essential for the induction of thermotolerance. We found that maize HSP101 accumulated in mature kernels in the absence of heat stress. At optimal temperatures, HSP101 disappeared within the first 3 days after imbibition, although its levels increased in response to heat shock. In embryonic cells, HSP101 concentrated in the nucleus and in some nucleoli. Hsp101 maps near the umc132 and npi280 markers on chromosome 6. Five maize hsp101-m-::Mu1 alleles were isolated. Mutants were null for HSP101 and defective in both induced and basal thermotolerance. Moreover, during the first 3 days after imbibition, primary roots grew faster in the mutants at optimal temperature. Thus, HSP101 is a nucleus-localized protein that, in addition to its role in thermotolerance, negatively influences the growth rate of the primary root. HSP101 is dispensable for proper embryo and whole plant development in the absence of heat stress.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Aclimatación/genética , Aclimatación/fisiología , Secuencia de Bases , Núcleo Celular/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas de Choque Térmico/genética , Calor , Inmunohistoquímica , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/química , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...