Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611495

RESUMEN

Hamelia patens (Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time. The production of MOAs was increased compared to the control up to 2-fold (41.3 mg g DW-1) at 72 h in JA-elicited plants and 2.5-fold (42.4 mg g DW-1) at 120 h in plants elicited with SA. The increment concurs with the increase in the expression levels of the genes HpaLAMT, HpaTDC, HpaSTR, HpaNPF2.9, HpaTHAS1, and HpaTHAS2. Interestingly, it was found that HpaSGD was downregulated in both treatments after 24 h but in the SA treatment at 120 h only was upregulated to 8-fold compared to the control. In this work, we present the results of MOA production in H. patens and discuss how JA and SA might be regulating the central biosynthetic steps that involve HpaSGD and HpaTHAS genes.

2.
Enzyme Microb Technol ; 160: 110094, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35810624

RESUMEN

Lignocellulose hydrolysates are rich in fermentable sugars such as xylose, cellobiose and glucose, with high potential in the biotechnology industry to obtain bioproducts of higher economic value. Thus, it is important to search for and study new yeast strains that co-consume these sugars to achieve better yields and productivity in the processes. The yeast Clavispora lusitaniae CDBB-L-2031, a native strain isolated from mezcal must, was studied under various culture conditions to potentially produce ethanol and xylitol due to its ability to assimilate xylose, cellobiose and glucose. This yeast produced ethanol under microaerobic conditions with yields of 0.451 gethanol/gglucose and 0.344 gethanol/gcellobiose, when grown on 1% glucose or cellobiose, respectively. In mixtures (0.5% each) of glucose:xylose and glucose:xylose:cellobiose the yields were 0.367 gethanol/gGX and 0. 380 gethanol/gGXC, respectively. Likewise, in identical conditions, C. lusitaniae produced xylitol from xylose with a yield of 0.421 gxylitol/gxylose. In 5% glucose or xylose, this yeast had better ethanol and xylitol titers and yields, respectively. However, glucose negatively affected xylitol production in the mixture of both sugars (3% each), producing only ethanol. Xylose reductase (XR) and xylitol dehydrogenase (XDH) activities were evaluated in cultures growing on xylose or glucose, obtaining the highest values in cultures on xylose at 8 h (25.9 and 6.22 mU/mg, respectively). While in glucose cultures, XR and XDH activities were detected once this substrate was consumed (4.06 and 3.32 mU/mg, respectively). Finally, the XYL1 and XYL2 genes encoding xylose reductase and xylitol dehydrogenase, respectively, were up-regulated by xylose, whereas glucose down-regulated their expression.


Asunto(s)
Xilitol , Xilosa , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Celobiosa/metabolismo , D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Etanol/metabolismo , Fermentación , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales , Xilitol/metabolismo , Xilosa/metabolismo
3.
J Anim Sci Biotechnol ; 12(1): 123, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34911584

RESUMEN

Methane from enteric fermentation is the gas with the greatest environmental impact emitted by ruminants. Lovastatin (Lv) addition to feedstocks could be a strategy to mitigate rumen methane emissions via decreasing the population of methanogenic archaea (MA). Thus, this paper provides the first overview of the effects of Lv supplementation, focusing on the inhibition of methane production, rumen microbiota, and ruminal fermentation. Results indicated that Lv treatment had a strong anti-methanogenic effect on pure strains of MA. However, there are uncertainties from in vitro rumen fermentation trials with complex substrates and rumen inoculum.Solid-state fermentation (SSF) has emerged as a cost-effective option to produce Lv. In this way, SSF of agricultural residues as an Lv-carrier supplement in sheep and goats demonstrated a consistent decrease in ruminal methane emissions. The experimental evidence for in vitro conditions showed that Lv did not affect the volatile fatty acids (VFA). However, in vivo experiments demonstrated that the production of VFA was decreased. Lv did not negatively affect the digestibility of dry matter during in vitro and in vivo methods, and there is even evidence that it can induce an increase in digestibility. Regarding the rumen microbiota, populations of MA were reduced, and no differences were detected in alpha and beta diversity associated with Lv treatment. However, some changes in the relative abundance of the microbiota were induced. Further studies are recommended on: (i) Lv biodegradation products and stability, as well as its adsorption onto the solid matter in the rumen, to gain more insight on the "available" or effective Lv concentration; and (ii) to determine whether the effect of Lv on ruminal fermentation also depends on the feed composition and different ruminants.

4.
Biotechnol Lett ; 41(10): 1233-1244, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31388801

RESUMEN

OBJECTIVE: To evaluate the induction of monoterpenoid indole alkaloids (MIA) and phenolic compound production by yeast extract (YE) and its relationship with defense responses in Uncaria tomentosa (Rubiaceae) root cultures. RESULTS: Root cultures were elicited by YE at three concentrations. The 0.5 mg YE ml-1 treatment did not affect cell viability but increased the hydrogen peroxide concentration by 5.7 times; guaiacol peroxidase activity by twofold; and the glucoindole alkaloid 3α-dihydrocadambine (DHC) content by 2.6 times (to 825.3 ± 27.3 µg g-1). This treatment did not affect the contents of monoterpenoid oxindole alkaloids or chlorogenic acids. In response to 0.5 mg YE ml-1 treatment, the transcript levels of MIA biosynthetic genes, TDC and LAMT, increased 5.4 and 1.9-fold, respectively, that of SGD decreased by 32%, and that of STR did not change. The transcript levels of genes related to phenolic compounds, PAL, CHS and HQT, increased by 1.7, 7.7, and 1.2-fold, respectively. Notably, the transcript levels of Prx1 and Prx encoding class III peroxidases increased by 1.4 and 2.5-fold. CONCLUSION: The YE elicitor induced an antioxidant defense response, increased the transcript levels of genes encoding enzymes related to strictosidine biosynthesis precursors and class III peroxidases, and decreased the transcript level of SGD. Thus, YE could stimulate antifungal DHC production in root cultures of U. tomentosa.


Asunto(s)
Antioxidantes/metabolismo , Uña de Gato/metabolismo , Medios de Cultivo/química , Raíces de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Levaduras/química , Vías Biosintéticas/genética , Ácido Clorogénico/metabolismo , Mezclas Complejas/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Fenoles/metabolismo
5.
Bioprocess Biosyst Eng ; 41(10): 1471-1484, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29971482

RESUMEN

On bioprocess engineering, experimental measurements are always a costly part of the modeling effort; therefore, there is a constant need to develop cheaper, simpler, and more efficient methodologies to exploit the information available. The aim of the present work was to develop a soft sensor with the capacity to perform reliable substrate predictions and control in microbial cultures of the fed-batch type, using mainly microbial growth data. This objective was achieved using dielectric spectroscopy technology for online monitoring of microbial growth and hybrid neural networks for online prediction of substrate concentration. The glucose estimator was integrated to a fuzzy logic controller to control the substrate concentration in a fed-batch experiment. Dielectric spectroscopy is a technology sensitive to the air volume fraction in the culture media and the turbulence generated by the agitation; however, the introduction of a polynomial function for the calibration of the permittivity signal allowed biomass estimations with an approximation error of 2%. The methodology presented in this work was successfully implemented for the glucose prediction and control of a fed-batch culture of Bacillus thuringiensis with an approximation error of 6%.


Asunto(s)
Bacillus thuringiensis/crecimiento & desarrollo , Biomasa , Reactores Biológicos , Espectroscopía Dieléctrica/métodos , Espectroscopía Dieléctrica/instrumentación
6.
Biotechnol Biofuels ; 10: 72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344647

RESUMEN

BACKGROUND: Pretreatment is necessary to reduce biomass recalcitrance and enhance the efficiency of enzymatic saccharification for biofuel production. Ionic liquid (IL) pretreatment has gained a significant interest as a pretreatment process that can reduce cellulose crystallinity and remove lignin, key factors that govern enzyme accessibility. There are several challenges that need to be addressed for IL pretreatment to become viable for commercialization, including IL cost and recyclability. In addition, it is unclear whether ILs can maintain process performance when utilizing low-cost, low-quality biomass feedstocks such as the paper fraction of municipal solid waste (MSW), which are readily available in high quantities. One approach to potentially reduce IL cost is to use a blend of ILs at different concentrations in aqueous mixtures. Herein, we describe 14 IL-water systems with mixtures of 1-ethyl-3-ethylimidazolium acetate ([C2C1Im][OAc]), 1-butyl-3-ethylimidazolium acetate ([C4C1Im][OAc]), and water that were used to pretreat MSW blended with agave bagasse (AGB). The detailed analysis of IL recycling in terms of sugar yields of pretreated biomass and IL stability was examined. RESULTS: Both biomass types (AGB and MSW) were efficiently disrupted by IL pretreatment. The pretreatment efficiency of [C2C1Im][OAc] and [C4C1Im][OAc] decreased when mixed with water above 40%. The AGB/MSW (1:1) blend demonstrated a glucan conversion of 94.1 and 83.0% using IL systems with ~10 and ~40% water content, respectively. Chemical structures of fresh ILs and recycle ILs presented strong similarities observed by FTIR and 1H-NMR spectroscopy. The glucan and xylan hydrolysis yields obtained from recycled IL exhibited a slight decrease in pretreatment efficiency (less than 10% in terms of hydrolysis yields compared to that of fresh IL), and a decrease in cellulose crystallinity was observed. CONCLUSIONS: Our results demonstrated that mixing ILs such as [C2C1Im][OAc] and [C4C1Im][OAc] and blending the paper fraction of MSW with agricultural residues, such as AGB, may contribute to lower the production costs while maintaining high sugar yields. Recycled IL-water mixtures provided comparable results to that of fresh ILs. Both of these results offer the potential of reducing the production costs of sugars and biofuels at biorefineries as compared to more conventional IL conversion technologies.Graphical abstractSchematic of ionic liquid (IL) pretreatment of agave bagasse (AB) and paper-rich fraction of municipal solid waste (MSW).

7.
Arch Microbiol ; 199(4): 605-611, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28138738

RESUMEN

Bioethanol is one of the main biofuels produced from the fermentation of saccharified agricultural waste; however, this technology needs to be optimized for profitability. Because the commonly used ethanologenic yeast strains are unable to assimilate cellobiose, several efforts have been made to express cellulose hydrolytic enzymes in these yeasts to produce ethanol from lignocellulose. The C. flavigenabglA gene encoding ß-glucosidase catalytic subunit was optimized for preferential codon usage in S. cerevisiae. The optimized gene, cloned into the episomal vector pRGP-1, was expressed, which led to the secretion of an active ß-glucosidase in transformants of the S. cerevisiae diploid strain 2-24D. The volumetric and specific extracellular enzymatic activities using pNPG as substrate were 155 IU L-1 and 222 IU g-1, respectively, as detected in the supernatant of the cultures of the S. cerevisiae RP2-BGL transformant strain growing in cellobiose (20 g L-1) as the sole carbon source for 48 h. Ethanol production was 5 g L-1 after 96 h of culture, which represented a yield of 0.41 g g-1 of substrate consumed (12 g L-1), equivalent to 76% of the theoretical yield. The S. cerevisiae RP2-BGL strain expressed the ß-glucosidase extracellularly and produced ethanol from cellobiose, which makes this microorganism suitable for application in ethanol production processes with saccharified lignocellulose.


Asunto(s)
Biocombustibles , Celobiosa/metabolismo , Cellulomonas/enzimología , Etanol/metabolismo , Saccharomyces cerevisiae/genética , beta-Glucosidasa/genética , Celulosa/metabolismo , Codón , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa/metabolismo
8.
Biotechnol Prog ; 32(2): 321-6, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26701152

RESUMEN

Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR-22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR-22 was run in the BCR using 1% alkali-pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed-batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321-326, 2016.


Asunto(s)
Celulasa/metabolismo , Cellulomonas/enzimología , Celulosa/biosíntesis , Endo-1,4-beta Xilanasas/metabolismo , Saccharum/metabolismo , Reactores Biológicos , Celulasa/biosíntesis , Cellulomonas/citología , Celulosa/química , Centrifugación , Endo-1,4-beta Xilanasas/biosíntesis , Fermentación , Saccharum/química
9.
Water Environ Res ; 88(11): 2159-2168, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28661332

RESUMEN

The objective of this work was to evaluate the degradation of the nonionic surfactant Tween 80 by a PCE-degrading consortium anchored in bioparticles of fluidized bed bioreactors used in onsite remediation. Batch lab-scale bioreactors were set with dominant denitrifying (DN), methanogenic (M), and aerobic (Ab) metabolisms. Tween 80 at 100 mg/L was the sole source of carbon and energy. Denitrifying bioreactors had the highest surfactant removal (70%). Tween removals in M and Ab bioreactors were 53 and 37%, respectively. Removals of organic matter (COD) closely followed the efficiencies reported for Tween. This strongly suggested that degradation of Tween 80 occurred. Positive consequences of Tween degradation in remediation are first, the surfactant will not become an environmental/health liability by remaining as a recalcitrant or toxic substance in aquifers or in treated effluents; and second, savings on aeration could be achieved by conducting Tween 80 degradation in anaerobic conditions, either DN or M.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/química , Tensoactivos/química , Tetracloroetileno/química , Contaminantes Químicos del Agua/química , Polisorbatos/química
10.
Arch Microbiol ; 197(10): 1129-39, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377586

RESUMEN

The primary carotenoid synthesized by Xanthophyllomyces dendrorhous is astaxanthin, which is used as a feed additive in aquaculture. Cell growth kinetics and carotenoid production were correlated with the mRNA levels of the idi, crtE, crtYB, crtI, crtS and crtR genes, and the changes in gene sequence between the wild-type and a carotenoid overproducer XR4 mutant strain were identified. At the late stationary phase, the total carotenoid content in XR4 was fivefold higher than that of the wild-type strain. Additionally, the mRNA levels of crtE and crtS increased during the XR4 growth and were three times higher than the wild-type strain in the late stationary phase. Moreover, the nucleotide sequences of crtYB, crtI and crtR exhibited differences between the strains. Both the higher crtE and crtS transcript levels and the crtYB, crtI and crtR mutations can, at least in part, act to up-regulate the carotenoid biosynthesis pathway in the XR4 strain.


Asunto(s)
Basidiomycota/metabolismo , Carotenoides/biosíntesis , Proteínas Fúngicas/biosíntesis , Regulación Fúngica de la Expresión Génica/genética , Secuencia de Bases , Basidiomycota/genética , Proteínas Fúngicas/genética , Expresión Génica , ARN Mensajero/genética , Análisis de Secuencia de ADN , Xantófilas/biosíntesis , Xantófilas/metabolismo
11.
Biotechnol Lett ; 37(12): 2489-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26272395

RESUMEN

OBJECTIVE: To obtain micro propagated Uncaria tomentosa plantlets with enhanced secondary metabolites production, long-term responses to salicylic acid (SA) pre-treatments at 1 and 100 µM were evaluated after propagation of the plantlets in a SA-free medium. RESULTS: SA pre-treatments of single node cuttings OF U. tomentosa produced long-term responses in microplants grown for 75 days in a SA-free medium. Reduction in survival rate, root formation, and stem elongation were observed only with 100 µM SA pre-treatments with respect to the control (0 + DMSO).Both pre-treatments enhanced H2O2 and inhibited superoxide dismutase and catalase activities, while guaiacol peroxidase was increased only with 1 µM SA. Also, both pre-treatments increased total monoterpenoid oxindole alkaloids by ca. 55 % (16.5 mg g(-1) DW), including isopteropodine, speciophylline, mitraphylline, isomitraphylline, rhynchopylline, and isorhynchopylline; and flavonoids by ca. 21 % (914 µg g(-1) DW), whereas phenolic compounds were increased 80 % (599 µg g(-1) DW) at 1 µM and 8.2 % (359 µg g(-1) DW) at 100 µM SA. CONCLUSION: Pre-treatment with 1 µM SA of U.tomentosa microplants preserved the survival rate and increased oxindole alkaloids, flavonoids, and phenolic compounds in correlation with H2O2 and peroxidase activity enhancements, offering biotechnological advantages over non-treated microplants.


Asunto(s)
Antioxidantes/metabolismo , Uña de Gato/efectos de los fármacos , Ácido Salicílico/metabolismo , Metabolismo Secundario/efectos de los fármacos , Alcaloides/análisis , Uña de Gato/enzimología , Uña de Gato/crecimiento & desarrollo , Uña de Gato/metabolismo , Medios de Cultivo/química , Flavonoides/análisis , Peróxido de Hidrógeno/análisis , Indoles/análisis , Monoterpenos/análisis , Oxindoles , Fenoles/análisis , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Análisis de Supervivencia
12.
Environ Sci Pollut Res Int ; 22(14): 10811-23, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25772869

RESUMEN

Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.


Asunto(s)
Chlorella vulgaris/metabolismo , Colorantes/metabolismo , Rojo Congo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adsorción , Animales , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Biodegradación Ambiental , Cladóceros/efectos de los fármacos , Colorantes/toxicidad , Rojo Congo/toxicidad , Daphnia/efectos de los fármacos , Concentración 50 Inhibidora , Industria Textil , Pruebas de Toxicidad Aguda , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
13.
Arch Microbiol ; 196(6): 411-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24676883

RESUMEN

The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin as its most prevalent xanthophyll derivative. Comparisons between the protein profiles of mutant lines of this yeast can provide insight into the carotenogenic pathway. Differently colored mutants (red, orange, pink, yellow, and white) were obtained from this yeast species, and their protein profiles were determined using two-dimensional polyacrylamide gel electrophoresis (2DE). Individual proteins differentially expressed were identified using mass spectrometry. The red mutants hyperproduced total carotenoids (mainly astaxanthin), while in white and orange mutants, mutagenesis affected the phytoene dehydrogenase activity as indicated by the accumulation of phytoene. Inactivation of astaxanthin synthase after the mutagenic treatment was evident in ß-carotene accumulating mutants. Differences in the proteomic profiles of wild-type X. dendrorhous and its colored mutants were demonstrated using 2DE. Of the total number of spots detected in each gel (297-417), 128 proteins were present in all strains. The red mutant showed the greatest number of matches with respect to the wild type (305 spots), while the white and yellow mutants, which had reduced concentrations of total carotenoids, presented the highest correlation coefficient (0.6) between each other. A number of differentially expressed proteins were sequenced, indicating that tricarboxylic acid cycle and stress response proteins are closely related to the carotenogenic process.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Pigmentos Biológicos/genética , Proteoma/genética , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Mutación/genética
14.
Arch Microbiol ; 196(1): 25-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217872

RESUMEN

The catalytic fraction of the Cellulomonas flavigena PN-120 oligomeric ß-glucosidase (BGLA) was expressed both intra- and extracellularly in a recombinant diploid of Saccharomyces cerevisiae, under limited nutrient conditions. The recombinant enzyme (BGLA¹5) expressed in the supernatant of a rich medium showed 582 IU/L and 99.4 IU/g dry cell, with p-nitrophenyl-ß-D-glucopyranoside as substrate. BGLA¹5 displayed activity against cello-oligosaccharides with 2-5 glucose monomers, demonstrating that the protein is not specific for cellobiose and that the oligomeric structure is not essential for ß-D-1,4-bond hydrolysis. Native ß-glucosidase is inhibited almost completely at 160 mM glucose, thus limiting cellobiose hydrolysis. At 200 mM glucose concentration, BGLA¹5 retained more than 50 % of its maximal activity, and even at 500 mM glucose concentration, more than 30 % of its activity was preserved. Due to these characteristics of BGLA¹5 activity, recombinant S. cerevisiae is able to utilize cellulosic materials (cello-oligosaccharides) to produce bioethanol.


Asunto(s)
Cellulomonas/enzimología , Cellulomonas/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Diploidia , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Hidrólisis , Oligosacáridos/metabolismo , Proteínas Recombinantes/genética
15.
Biotechnol Prog ; 29(3): 621-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23606578

RESUMEN

The activity and gene expression of strictosidine-related enzymes in Uncaria tomentosa root cultures exposed to oxidative stress were studied. Elicitation with 0.2 mM hydrogen peroxide (H2 O2 ) or a combination of 0.8 mM buthionine sulfoximine and 0.2 mM jasmonic acid (BSO-JA) increased peroxidase activities by twofold at Day 8 and glutathione reductase by 1.4-fold at Day 5 in H2 O2 elicited cultures respect to the control. Production of monoterpenoid oxindole alkaloids (MOA), 3α-dihydrocadambine, and dolichantoside was stimulated after H2 O2 elicitation, reaching levels of 886.4 ± 23.6, 847.7 ± 25.4, and 87.5 ± 7.2 µg/g DW, at Day 8 which were 1.7-, 2.1-, and 2.3-fold higher relative to control. BSO-JA elicited cultures produced about twice alkaloids than H2 O2 -treated cultures, following a biphasic pattern with maxima at 0.5 and 8 days. Alkaloid production was preceded by increase in strictosidine synthase (STR) and strictosidine glucosidase (SGD) activities. After elicitation with H2 O2 or BSO-JA, the STR activity (pKat/mg protein) increased by 1.9-fold (93.8 ± 17.8 at 24 h) or 2.5-fold (102.4 ± 2.2 at 6 h) and the SGD activity (pKat/mg protein) by 2.8-fold (245.2 ± 14.4 at 6 h) or 4.2-fold (421.2 ± 1.8 at 18 h) relative to control. STR and SGD transcripts were upregulated after elicitation. H2 O2 -treated roots showed higher levels of STR at 48-192 h and SGD at 24-48 h, while BSO-JA treatments showed STR increased at 12 h and SGD at 24 h. Also, LC/ESI-MS confirmed the biosynthesis of dolichantoside from N-ω-methyltryptamine and secologanin by U. tomentosa protein extracts.


Asunto(s)
Alcaloides/metabolismo , Uña de Gato/enzimología , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/metabolismo , Alcaloides/análisis , Análisis de Varianza , Butionina Sulfoximina/farmacología , Liasas de Carbono-Nitrógeno/genética , Liasas de Carbono-Nitrógeno/metabolismo , Uña de Gato/efectos de los fármacos , Uña de Gato/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosidasas/genética , Glucosidasas/metabolismo , Peróxido de Hidrógeno/farmacología , Indoles/metabolismo , Redes y Vías Metabólicas , Monosacáridos/metabolismo , Estrés Oxidativo/fisiología , Oxindoles , Oxilipinas/farmacología , Raíces de Plantas/química , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Nat Prod Commun ; 7(11): 1441-4, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23285803

RESUMEN

Chemical studies on Hamelia patens (Rubiaceae) micropropagated plantlets allowed production of a new monoterpenoid oxindole alkaloid, named (-)-hameline (7), together with eight known alkaloids, tetrahydroalstonine (1), aricine (2), pteropodine (3), isopteropodine (4), uncarine F (5), speciophylline (6), palmirine (8), and rumberine (9). The structure of the new alkaloid was assigned on the basis of 1D and 2D NMR spectroscopy, mass spectrometry, and molecular modeling.


Asunto(s)
Alcaloides/aislamiento & purificación , Hamelia/química , Monoterpenos/aislamiento & purificación , Alcaloides/química , Técnicas de Cultivo , Estructura Molecular , Monoterpenos/química
17.
J Ind Microbiol Biotechnol ; 38(1): 257-64, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20803244

RESUMEN

Derepressed mutant PR-22 was obtained by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenic treatment of Cellulomonas flavigena PN-120. This mutant improved its xylanolytic activity from 26.9 to 40 U mg(-1) and cellulolytic activity from 1.9 to 4 U mg(-1); this represented rates almost 2 and 1.5 times higher, respectively, compared to its parent strain growing in sugarcane bagasse. Either glucose or cellobiose was added to cultures of C. flavigena PN-120 and mutant PR-22 induced with sugarcane bagasse in batch culture. The inhibitory effect of glucose on xylanase activity was more noticeable for parent strain PN-120 than for mutant PR-22. When 20 mM glucose was added, the xylanolytic activity decreased 41% compared to the culture grown without glucose in mutant PR-22, whereas in the PN-120 strain the xylanolytic activity decreased by 49% at the same conditions compared to its own control. Addition of 10 and 15 mM of glucose did not adversely affect CMCase activity in PR-22, but glucose at 20 mM inhibited the enzymatic activity by 28%. The CMCase activity of the PN-120 strain was more sensitive to glucose than PR-22, with a reduction of CMCase activity in the range of 20-32%. Cellobiose had a more significant effect on xylanase and CMCase activities than glucose did in the mutant PR-22 and parent strain. Nevertheless, the activities under both conditions were always higher in the mutant PR-22 than in the PN-120 strain. Enzymatic saccharification experiments showed that it is possible to accumulate up to 10 g l(-1) of total soluble sugars from pretreated sugarcane bagasse with the concentrated enzymatic crude extract from mutant PR-22.


Asunto(s)
Celulasa/biosíntesis , Cellulomonas/enzimología , Endo-1,4-beta Xilanasas/biosíntesis , Microbiología Industrial , Biomasa , Celobiosa/metabolismo , Cellulomonas/genética , Celulosa/metabolismo , Medios de Cultivo , Glucosa/metabolismo , Mutación
18.
Arch Microbiol ; 191(10): 745-50, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19701743

RESUMEN

Cellulomonas flavigena produces a battery of cellulase components that act concertedly to degrade cellulose. The addition of cAMP to repressed C. flavigena cultures released catabolic repression, while addition of cAMP to induced C. flavigena cultures led to a cellobiohydrolase hyperproduction. Exogenous cAMP showed positive regulation on cellobiohydrolase production in C. flavigena grown on sugar cane bagasse. A C. flavigena cellobiohydrolase gene was cloned (named celA), which coded for a 71- kDa enzyme. Upstream, a repressor celR1, identified as a 38 kDa protein, was monitored by use of polyclonal antibodies.


Asunto(s)
Cellulomonas/enzimología , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa/metabolismo , AMP Cíclico/metabolismo , Proteínas Bacterianas/biosíntesis , Cellulomonas/genética , Cellulomonas/crecimiento & desarrollo , ADN Bacteriano/genética , Fermentación , Proteínas Represoras/genética , Saccharum/química
19.
Bioresour Technol ; 100(8): 2388-91, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19111459

RESUMEN

Cr(VI) removal by Scenedesmus incrassatulus was characterized in a continuous culture system using a split-cylinder internal-loop airlift photobioreactor fed continuously with a synthetic effluent containing 1.0mg Cr(VI) l(-1) at dilution rate (D) of 0.3d (-1). At steady state, there was a small increase (6%) on the dry biomass (DB) concentration of Cr(VI)-treated cultures compared with the control culture. 1.0mg Cr(VI) l(-1) reduced the photosynthetic pigments content and altered the cellular morphology, the gain in dry weight was not affected. At steady state, Cr(VI) removal efficiency was 43.5+/-1.0% and Cr(VI) uptake was 1.7+/-0.1 mg Cr(VI) g(-1) DB. The system reached a specific metal removal rate of 458 microg Cr(VI) g(-1) DB d(-1), and a volumetric removal rate of 132 microg Cr(VI) l(-1) d(-1).


Asunto(s)
Reactores Biológicos , Cromo/aislamiento & purificación , Luz , Scenedesmus/metabolismo , Scenedesmus/efectos de la radiación , Biodegradación Ambiental/efectos de la radiación , Biomasa , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/metabolismo
20.
Curr Microbiol ; 57(1): 39-44, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18379842

RESUMEN

Cellulomonas flavigena CDBB-531 was found to secrete a bifunctional cellulase/xylanase with a molecular mass of 49 kDa and pI 4.3. This enzyme was active on Remazol brilliant blue-carboxymethylcellulose (RBB-CMC) and Remazol brilliant blue-xylan (RBB-X). Based on thin-layer chromatographic analysis of the degradation products, the cellulase activity produced glucose, cellobiose, cellotriose, and cellotetraose from CMC as the substrate. When xylan from birchwood was used, end products were xylose, arabinose, and xylobiose. The bifunctional enzyme showed a pH optimum of 6 for cellulase activity and 9 for xylanase activity, which pointed out that this enzyme had separate sites for each activity. In both cases, the apparent optimum temperature was 50 degrees C. The predicted amino acid sequence of purified protein showed similarity with the catalytic domain of several glycosyl hydrolases of family 10.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Cellulomonas/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Microbiología Industrial , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Celulasa/aislamiento & purificación , Cellulomonas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Cinética , Peso Molecular , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...