RESUMEN
Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.
Asunto(s)
Coffea , Café , Humanos , Haití , Ecosistema , Coffea/genética , Variación GenéticaRESUMEN
To understand the importance of ethylene receptor genes in the quality of coffee berries three full-length cDNAs corresponding to a putative ethylene receptor gene (ETR1) were isolated from Coffea canephora cDNA libraries. They differed by their 3'UTR and contained a main ORF and a 5'UTR short ORF putatively encoding a small polypeptide. The CcETR1 gene, present as a single copy in the C. canephora genome, contained five introns in the coding region and one in its 5'UTR. Alternative splicing can occur in C. canephora and C. pseudozanguebariae, leading to a truncated polypeptide. C. pseudozanguebariae ETR1 transcripts showed various forms of splicing alterations. This gene was equally expressed at all stages of fruit development. A segregation study on an inter-specific progeny showed that ETR1 is related to the fructification time, the caffeine content of the green beans, and seed weight. Arabidopsis transformed etiolated seedlings, which over-expressed CcETR1, displayed highly reduced gravitropism, but the triple response was observed in an ethylene enriched environment. These plants behaved like a low-concentration ethylene-insensitive mutant thus confirming the receptor function of the encoded protein. This gene showed no induction during the climacteric crisis but some linkage with traits related to quality.