Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(5): 1793-1807, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38648355

RESUMEN

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Asunto(s)
Cardiomiopatía Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Animales , Ratones , Cardiomiopatía Chagásica/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Miocardio/patología , Masculino , Trypanosoma cruzi/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Miocarditis/tratamiento farmacológico , Miocarditis/parasitología
2.
Front Cell Infect Microbiol ; 12: 980817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467728

RESUMEN

Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.


Asunto(s)
Enfermedad de Chagas , Exosomas , Vesículas Extracelulares , Trypanosoma cruzi , Animales , Comunicación Celular , Enfermedad de Chagas/terapia
3.
Front Cell Infect Microbiol ; 11: 768566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900754

RESUMEN

Trypanosoma cruzi is a protozoan parasite that affects millions of people in Latin America. Infection occurs by vectorial transmission or by transfusion or transplacental route. Immune events occurring immediately after the parasite entrance are poorly explored. Dendritic cells (DCs) are target for the parasite immune evasion mechanisms. Recently, we have demonstrated that two different populations of DCs display variable activation after interaction with the two infective forms of the parasite: metacyclic or blood trypomastigotes (mTp or bTp) in vitro. The skin constitutes a complex network with several populations of antigen-presenting cells. Previously, we have demonstrated T. cruzi conditioning the repertoire of cells recruited into the site of infection. In the present work, we observed that mTp and bTp inoculation displayed differences in cell recruitment to the site of infection and in the activation status of APCs in draining lymph nodes and spleen during acute infection. Animals inoculated with mTp exhibited 100% of survival with no detectable parasitemia, in contrast with those injected with bTp that displayed high mortality and high parasite load. Animals infected with mTp and challenged with a lethal dose of bTp 15 days after primary infection showed no mortality and incremented DC activation in secondary lymphoid organs compared with controls injected only with bTp or non-infected mice. These animals also displayed a smaller number of amastigote nests in cardiac tissue and more CD8 T cells than mice infected with bTp. All the results suggest that both Tp infective stages induce an unequal immune response since the beginning of the infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Inmunidad , Ratones , Parasitemia , Bazo
4.
Front Cell Infect Microbiol ; 11: 671104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295832

RESUMEN

Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.


Asunto(s)
Enfermedad de Chagas , Células Supresoras de Origen Mieloide , Vacunas Antiprotozoos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/prevención & control , Glicoproteínas , Ratones , Neuraminidasa
5.
Front Microbiol ; 12: 794765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046919

RESUMEN

Trypanosoma cruzi, the protozoan parasite causative agent of Chagas disease, affects about seven million people worldwide, representing a major global public health concern with relevant socioeconomic consequences, particularly in developing countries. In this review, we discuss the multiple roles of galectins, a family of ß-galactoside-binding proteins, in modulating both T. cruzi infection and immunoregulation. Specifically, we focus on galectin-driven circuits that link parasite invasion and inflammation and reprogram innate and adaptive immune responses. Understanding the dynamics of galectins and their ß-galactoside-specific ligands during the pathogenesis of T. cruzi infection and elucidating their roles in immunoregulation, inflammation, and tissue damage offer new rational opportunities for treating this devastating neglected disease.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32175284

RESUMEN

Trypanosoma cruzi is a protozoan parasite that infects at least 7 million persons in the world (OMS, 2019). In endemic areas, infection normally occurs by vectorial transmission; however, outside, it normally happens by blood and includes congenital transmission. The persistence of T. cruzi during infection suggests the presence of immune evasion mechanisms and the modulation of the anti-parasite response to a profile incapable of eradicating the parasite. Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells (APCs) that patrol tissues with a key role in mediating the interface between the innate and adaptive immune response. Previous results from our lab and other groups have demonstrated that T. cruzi modulates the functional properties of DCs, in vitro and in vivo. During vectorial transmission, metacyclic (m) trypomastigotes (Tps) eliminated along with the insect feces reach the mucous membranes or injured skin. When transmission occurs by the hematic route, the parasite stage involved in the infection is the circulating or blood (b) Tp. Here, we studied in vitro the effect of both infective mTp and bTp in two different populations of DCs, bone marrow-derived DCs (BMDCs) and XS106, a cell line derived from epidermal DCs. Results demonstrated that the interaction of both Tps imparts a different effect in the functionality of these two populations of DCs, suggesting that the stage of T. cruzi and DC maturation status could define the immune response from the beginning of the ingress of the parasite, conditioning the course of the infection.


Asunto(s)
Células Dendríticas/inmunología , Células de Langerhans/inmunología , Trypanosoma cruzi/fisiología , Animales , Presentación de Antígeno , Línea Celular , Proliferación Celular , Células Dendríticas/metabolismo , Células Dendríticas/parasitología , Interleucina-10/metabolismo , Células de Langerhans/metabolismo , Células de Langerhans/parasitología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Linfocitos T/fisiología , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-30123776

RESUMEN

Early research on sepsis has focused on the initial hyper-inflammatory, cytokine mediated phase of the disorder whereas the events that govern the concomitant and subsequent anti-inflammatory compensatory response are not completely understood. In this context, the putative participation of TNFR1-mediated signaling in the immunosuppressive phase of Staphylococcus aureus sepsis has not been elucidated. The aim of this study was to determine the role of TNFR1 in directing the immune dysfunction during S. aureus sepsis and the potential contribution of MDSC to this process. Using a model of sepsis of peritoneal origin and tnfr1-/- mice, we demonstrated that during staphylococcal sepsis CD4+ T cell anergy is significantly dependent on TNFR1 expression and that signaling through this receptor has an impact on bacterial clearance in the spleen. MDSC played a major role in the generation of anergic CD4+ T cells and their accumulation in the spleen during S. aureus sepsis correlated with IL-6 induction. Although TNFR1 signaling was not required for MDSC accumulation and expansion in the spleen, it determined the in vivo expression of Arginase 1 and iNOS, enzymes known to participate in the suppressive function of this population. Moreover, our data indicate that TNFR1-mediated IL-10 production may modulate MDSC function during staphylococcal sepsis. Taken together these results indicate that TNFR1 plays a critical role on T cell dysfunction during S. aureus sepsis by regulating immunomodulatory mediators in MDSC. The role of TNFR1-mediated signaling during the immunosuppressive phase of staphylococcal sepsis should be considered when designing novel alternative therapeutic approaches.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Terapia de Inmunosupresión , Células Supresoras de Origen Mieloide/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Sepsis/patología , Transducción de Señal , Infecciones Estafilocócicas/patología , Animales , Arginasa/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Sepsis/inmunología , Bazo/patología , Infecciones Estafilocócicas/inmunología
8.
Eur J Immunol ; 47(11): 1936-1948, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28748529

RESUMEN

Pathogens can cause inflammation when inoculated into the skin. The vector-transmitted protozoan parasite Trypanosoma cruzi induces poor cellular-infiltration and disseminates, causing high mortality in the experimental model. Here, we characterized the inflammatory foci at the parasite inoculation site and secondary lymphoid organs using a murine model. While no macrophages and few neutrophils and monocytes (Mo) were recruited into the skin, T. cruzi infection elicited the mobilization of Ly6C+ Mo to draining lymph nodes and spleen. Over time, this population became enriched in CD11b+ Ly6C+ CD11c+ MHCII+ CD86+ cells resembling inflammatory dendritic cells (DCs). Adoptive transfer of Ly6C+ Mo purified from the bone marrow of CD11c-GFP transgenic mice confirmed the monocytic origin of Ly6C+ DCs found in the spleen of infected animals. Isolated Mo-derived cells not only produced TNF-α and nitric oxide, but also IL-10 and displayed a poor capacity to induce lymphoproliferation. Ablation of Mo-derived cells by 5-fluorouracil confirmed their dual role during infection, limiting the parasite load by inducible nitric oxide synthase-related mechanisms and negatively affecting the development of anti-parasite T-cell response. This study demonstrated that consistent with their antagonistic properties, these cells not only control the parasite spreading but also its persistence in the host.


Asunto(s)
Enfermedad de Chagas/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Piel/inmunología , Bazo/inmunología , Animales , Diferenciación Celular/inmunología , Células Dendríticas/parasitología , Ganglios Linfáticos/parasitología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Piel/parasitología , Bazo/parasitología , Trypanosoma cruzi/inmunología
9.
Int J Parasitol ; 47(10-11): 675-686, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28668323

RESUMEN

Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be mediated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present in three different species of cestodes, Taenia crassiceps, Mesocestoides corti and Echinococcus multilocularis. To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission electron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous structures into the culture media, similar vesicles were observed in the interface of the germinal and laminated layers of E. multilocularis metacestodes and were hardly detected in culture supernatants. We then determined the protein cargo in the EV-enriched secreted fractions of T. crassiceps and M. corti conditioned media by LC-MS/MS. Among the identified proteins, eukaryotic vesicle-enriched proteins were identified as expected, but also proteins used for cestode disease diagnosis, proteins related to neurotransmission, lipid binding proteins as well as host immunoglobulins and complement factors. Finally, we confirmed by capillary electrophoresis the presence of intravesicular RNA for both parasites and detected microRNAs by reverse transcription-PCR. This is the first report of EV secretion in cestode parasites and of an RNA secretion mechanism. These findings will provide valuable data not only for basic cestode biology but also for the rational search for new diagnostic targets.


Asunto(s)
Cestodos/fisiología , Vesículas Extracelulares/metabolismo , Proteínas del Helminto/inmunología , MicroARNs/química , Animales , Cestodos/genética , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
10.
J Immunol ; 195(7): 3311-24, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26324777

RESUMEN

Galectin-1 (Gal-1), an endogenous glycan-binding protein, is widely distributed at sites of inflammation and microbial invasion. Despite considerable progress regarding the immunoregulatory activity of this lectin, the role of endogenous Gal-1 during acute parasite infections is uncertain. In this study, we show that Gal-1 functions as a negative regulator to limit host-protective immunity following intradermal infection with Trypanosoma cruzi. Concomitant with the upregulation of immune inhibitory mediators, including IL-10, TGF-ß1, IDO, and programmed death ligand 2, T. cruzi infection induced an early increase of Gal-1 expression in vivo. Compared to their wild-type (WT) counterpart, Gal-1-deficient (Lgals1(-/-)) mice exhibited reduced mortality and lower parasite load in muscle tissue. Resistance of Lgals1(-/-) mice to T. cruzi infection was associated with a failure in the activation of Gal-1-driven tolerogenic circuits, otherwise orchestrated by WT dendritic cells, leading to secondary dysfunction in the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells. This effect was accompanied by an increased number of CD8(+) T cells and higher frequency of IFN-γ-producing CD4(+) T cells in muscle tissues and draining lymph nodes as well as reduced parasite burden in heart and hindlimb skeletal muscle. Moreover, dendritic cells lacking Gal-1 interrupted the Gal-1-mediated tolerogenic circuit and reinforced T cell-dependent anti-parasite immunity when adoptively transferred into WT mice. Thus, endogenous Gal-1 may influence T. cruzi infection by fueling tolerogenic circuits that hinder anti-parasite immunity.


Asunto(s)
Enfermedad de Chagas/inmunología , Células Dendríticas/inmunología , Galectina 1/genética , Linfocitos T Reguladores/inmunología , Trypanosoma cruzi/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Enfermedad de Chagas/mortalidad , Enfermedad de Chagas/parasitología , Galectina 1/biosíntesis , Galectina 1/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Carga de Parásitos , Proteína 2 Ligando de Muerte Celular Programada 1/biosíntesis , Factor de Crecimiento Transformador beta1/biosíntesis
11.
J Innate Immun ; 5(5): 494-504, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23689360

RESUMEN

Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.


Asunto(s)
Enfermedad de Chagas/inmunología , Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Trypanosoma cruzi/inmunología , Animales , Anticuerpos Bloqueadores/administración & dosificación , Diferenciación Celular , Células Cultivadas , Citotoxicidad Inmunológica/efectos de los fármacos , Citotoxicidad Inmunológica/genética , Células Dendríticas/parasitología , Interleucina-10/genética , Células Asesinas Naturales/parasitología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Receptores de Interleucina-10/inmunología , Trypanosoma cruzi/patogenicidad , Virulencia
12.
Vaccine ; 28(46): 7407-13, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20850535

RESUMEN

In diverse models of microbial infections, protection is improved by immunization with dendritic cells (DC) loaded with whole pathogen lysate. However, pathogens that modulate DC function as a way to evade immunity may represent a challenge for these vaccination strategies. Thus, DC must be instructed in a particular manner to circumvent this issue and drive an effective immune response. Trypanosoma cruzi or its molecules alter DC function and, as we demonstrated, this phenomenon is associated with the parasite-driven stimulation of IL-10 production by DC. Here, we show that DC from IL-10-deficient mice pulsed in vitro with trypomastigote lysate secreted increased amounts of Th1-related cytokines and stimulated higher allogeneic and antigen-specific lymphocyte responses than their wild-type counterparts. In a model of DC-based immunization, these antigen-pulsed IL-10-deficient DC conferred protection against T. cruzi infection to recipient mice. Efficient immunity was associated with enhanced antigen-specific IFN-gamma production and endogenous DC activation. We illustrate for the first time a DC-based vaccination against T. cruzi and evidence the key role of IL-10 produced by sensitizing DC in inhibiting the induction of protection. These results support the rationale for vaccination strategies that timely suppress the effect of specific cytokines secreted by antigen presenting DC.


Asunto(s)
Traslado Adoptivo , Enfermedad de Chagas/prevención & control , Células Dendríticas/inmunología , Interleucina-10/inmunología , Animales , Antígenos de Protozoos/inmunología , Enfermedad de Chagas/inmunología , Femenino , Interferón gamma/inmunología , Interleucina-10/genética , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Trypanosoma cruzi/inmunología
13.
Mol Immunol ; 47(11-12): 1981-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20537708

RESUMEN

Several Trypanosoma cruzi molecules that stimulate macrophages activity were described as Toll-like receptor 2 (TLR2) ligands. Besides, the models of dendritic cells (DC) are poorly characterised. We have previously demonstrated that live-trypomastigotes (Tp) plus lipopolysaccharide (LPS) induce DC with tolerogenic properties that produce high levels of interleukin (IL)-10 and an impaired capacity to induce lymphoproliferation. Here, we show that the regulatory phenotype was observed with heat-killed trypomastigotes (Tphk) stimulation, ruling out DC infection. T. cruzi induced a particular DC activation state increasing LPS-activation of extracellular regulated kinase (ERK) 1/2 and signal transducer and activator of transcription (STAT) 3. Inhibition of ERK down-regulated IL-10 production and restored DC stimulatory capacity, showing the importance of this pathway in the DC modulation. A recent work shows that signalling via TLR4 and TLR2 induces a synergism in anti-inflammatory cytokine production in murine DC. Upon TLR2 and TLR4 stimulation using Pam(3)Cys or LPS and Tphk in DC from TLR2 knock out (KO) or TLR4-mutant mice, we showed that high levels of IL-10 were independent of TLR2 but associated with TLR4 and NF-kappaB signallization. Although sialic acid has been described as a molecule responsible of DC inhibition, we determine that it is not associated with T. cruzi-IL-10 modulatory response. In conclusion, all these findings demonstrate a key role of ERK and TLR4 in association with NF-kappaB in IL-10 modulation induced by T. cruzi and suggest that this regulatory effect involves parasite-DC interactions not described yet.


Asunto(s)
Células Dendríticas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Interleucina-10/biosíntesis , Receptor Toll-Like 4/fisiología , Trypanosoma cruzi/inmunología , Animales , Células Cultivadas , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos , Ácido N-Acetilneuramínico/fisiología , FN-kappa B/fisiología , Fosforilación , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 2/fisiología
14.
Infect Immun ; 76(6): 2633-41, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18347042

RESUMEN

A main feature of acute infection with Trypanosoma cruzi is the presence of immunological disorders. A previous study demonstrated that acute infection with the virulent RA strain downregulates the expression of major histocompatibility complex class II (MHC-II) on antigen-presenting cells and impairs the T-cell stimulatory capacity of splenic dendritic cells (DC). In the present work, we assessed the ability of trypomastigotes (Tp) to modulate the differentiation stage and functionality of bone marrow-derived DC in vitro. We observed that the Tp stage of T. cruzi failed to activate DC, which preserved their low expression of MHC-II and costimulatory molecules, as well as their endocytic activity. We also show that Tp induced transforming growth factor beta (TGF-beta) secretion by DC and enhanced the gap between interleukin-10 (IL-10) and IL-12p70 production, showing a higher IL-10/IL-12p70 ratio upon lipopolysaccharide (LPS) treatment. In addition, we observed that Tp prevented DC full activation induced by LPS, thereby downregulating their MHC-II surface expression and inhibiting their capacity to stimulate lymphocyte proliferation. In vitro IL-10 neutralization during the differentiation process of DC with Tp+LPS showed a reversion of their inhibitory effect during mixed lymphocyte reaction. In contrast, only simultaneous neutralization of IL-10 and TGF-beta, after DC differentiation, was involved in the partial restitution of lymphocyte proliferation. Since both TGF-beta and IL-10 are immunosuppressive cytokines essential in the modulation of the immune response and important in the induction of tolerance, our results suggest for the first time that Tp are responsible for the generation of regulatory DC in vitro.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/parasitología , Trypanosoma cruzi/fisiología , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Regulación de la Expresión Génica , Genes MHC Clase II/fisiología , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...