Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 607(7917): 81-85, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794266

RESUMEN

Electric control of magnetism and magnetic control of ferroelectricity can improve the energy efficiency of magnetic memory and data-processing devices1. However, the necessary magnetoelectric switching is hard to achieve, and requires more than just a coupling between the spin and the charge degrees of freedom2-5. Here we show that an application and subsequent removal of a magnetic field reverses the electric polarization of the multiferroic GdMn2O5, thus requiring two cycles to bring the system back to the original configuration. During this unusual hysteresis loop, four states with different magnetic configurations are visited by the system, with one half of all spins undergoing unidirectional full-circle rotation in increments of about 90 degrees. Therefore, GdMn2O5 acts as a magnetic crankshaft that converts the back-and-forth variations of the magnetic field into a circular spin motion. This peculiar four-state magnetoelectric switching emerges as a topologically protected boundary between different two-state switching regimes. Our findings establish a paradigm of topologically protected switching phenomena in ferroic materials.

2.
Adv Mater ; 33(13): e2008004, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33644923

RESUMEN

The unique combination of organic and inorganic layers in 2D layered perovskites offers promise for the design of a variety of materials for mechatronics, flexoelectrics, energy conversion, and lighting. However, the potential tailoring of their properties through the organic building blocks is not yet well understood. Here, different classes of organoammonium molecules are exploited to engineer the optical emission and robustness of a new set of Ruddlesden-Popper metal-halide layered perovskites. It is shown that the type of molecule regulates the number of hydrogen bonds that it forms with the edge-sharing [PbBr6 ]4- octahedra layers, leading to strong differences in the material emission and tunability of the color coordinates, from deep-blue to pure-white. Also, the emission intensity strongly depends on the length of the molecules, thereby providing an additional parameter to optimize their emission efficiency. The combined experimental and computational study provides a detailed understanding of the impact of lattice distortions, compositional defects, and the anisotropic crystal structure on the emission of such layered materials. It is foreseen that this rational design can be extended to other types of organic linkers, providing a yet unexplored path to tailor the optical and mechanical properties of these materials and to unlock new functionalities.

3.
Adv Mater ; 32(9): e1905132, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31967707

RESUMEN

Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103 S m-1 is observed in certain BiFeO3 DWs, which is about 100 000 times greater than the carrier-induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out-of-plane microwave fields and induce power dissipation, which is confirmed by the phase-field modeling. Since the contributions from mobile-carrier conduction and bound-charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano-devices for radio-frequency applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...