Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125262

RESUMEN

Aberrant DNA methylation is a well-known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients' outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes was commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five Cytosine-phosphate-Guanine (CpGs) identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Cromosomas , Islas de CpG , Citosina , Metilación de ADN , Epigénesis Genética , Epigenoma , Regulación Neoplásica de la Expresión Génica , Guanina , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Fosfatos , Ratas , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
2.
BMC Genomics ; 23(1): 485, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780080

RESUMEN

Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.


Asunto(s)
Apicomplexa , Animales , Apicomplexa/genética , Crustáceos/genética , Genoma , Humanos , Invertebrados/genética , Filogenia
3.
J Mol Biol ; 434(7): 167497, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189129

RESUMEN

The artificial 601 DNA sequence is often used to constrain the position of nucleosomes on a DNA molecule in vitro. Although the ability of the 147 base pair sequence to precisely position a nucleosome in vitro is well documented, application of this property in vivo has been explored only in a few studies and yielded contradictory conclusions. Our goal in the present study was to test the ability of the 601 sequence to dictate nucleosome positioning in Saccharomyces cerevisiae in the context of a long tandem repeat array inserted in a yeast chromosome. We engineered such arrays with three different repeat size, namely 167, 197 and 237 base pairs. Although our arrays are able to position nucleosomes in vitro, analysis of nucleosome occupancy in vivo revealed that nucleosomes are not preferentially positioned as expected on the 601-core sequence along the repeats and that the measured nucleosome repeat length does not correspond to the one expected by design. Altogether our results demonstrate that the rules defining nucleosome positions on this DNA sequence in vitro are not valid in vivo, at least in this chromosomal context, questioning the relevance of using the 601 sequence in vivo to achieve precise nucleosome positioning on designer synthetic DNA sequences.


Asunto(s)
Nucleosomas , Saccharomyces cerevisiae , Secuencias Repetidas en Tándem , Ensamble y Desensamble de Cromatina , ADN de Hongos/genética , ADN de Hongos/metabolismo , Ingeniería Genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias Repetidas en Tándem/genética
4.
Bioinformatics ; 37(21): 3947-3949, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34100911

RESUMEN

SUMMARY: Genomic sequences are widely used to infer the evolutionary history of a given group of individuals. Many methods have been developed for sequence clustering and tree building. In the early days of genome sequencing, these were often limited to hundreds of sequences but due to the surge of high throughput sequencing, it is now common to have millions of sampled sequences at hand. We introduce MNHN-Tree-Tools, a high performance set of algorithms that builds multi-scale, nested clusters of sequences found in a FASTA file. MNHN-Tree-Tools does not rely on multiple sequence alignment and can thus be used on large datasets to infer a sequence tree. Herein, we outline two applications: a human alpha-satellite repeats classification and a tree of life derivation from 16S/18S rDNA sequences. AVAILABILITY AND IMPLEMENTATION: Open source with a Zlib License via the Git protocol: https://gitlab.in2p3.fr/mnhn-tools/mnhn-tree-tools. MANUAL: A detailed users guide and tutorial: https://gitlab.in2p3.fr/mnhn-tools/mnhn-tree-tools-manual/-/raw/master/manual.pdf. WEBSITE AND FAQ: http://treetools.haschka.net. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Genómica , Humanos , Filogenia , Alineación de Secuencia , Análisis por Conglomerados
5.
Genome Biol Evol ; 10(7): 1837-1851, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860303

RESUMEN

Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about 7 Ma. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our data sets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our fluorescence in situ hybridization (FISH) experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA that coexists with higher order organization patterns in the C. pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.


Asunto(s)
Centrómero/genética , Cercopithecus/genética , ADN Satélite/genética , Animales , Secuencia de Bases , Cercopithecidae/genética , Secuencia de Consenso , Evolución Molecular , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Repeticiones de Minisatélite , Análisis de Secuencia de ADN
6.
Environ Pollut ; 219: 119-131, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27814527

RESUMEN

Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 µg L-1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 µg L-1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100-400 genes are differentially expressed under 5 µg L-1 MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a wider range of biological pathways, compared with pure MC-LR, and even 1 µg L-1 MC-LR potentially induces a health risk for aquatic organisms.


Asunto(s)
Toxinas Bacterianas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedades de los Peces/inducido químicamente , Hígado/efectos de los fármacos , Microcistinas/toxicidad , Microcystis/química , Oryzias/fisiología , Reproducción/efectos de los fármacos , Animales , Toxinas Bacterianas/administración & dosificación , Extractos Celulares/administración & dosificación , Extractos Celulares/farmacología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glucógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Microcistinas/administración & dosificación , Oviparidad/efectos de los fármacos , Oviparidad/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Transcriptoma/efectos de los fármacos
7.
BMC Genomics ; 17(1): 916, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842493

RESUMEN

BACKGROUND: Alpha satellite is the major repeated DNA element of primate centromeres. Evolution of these tandemly repeated sequences has led to the existence of numerous families of monomers exhibiting specific organizational patterns. The limited amount of information available in non-human primates is a restriction to the understanding of the evolutionary dynamics of alpha satellite DNA. RESULTS: We carried out the targeted high-throughput sequencing of alpha satellite monomers and dimers from the Cercopithecus solatus genome, an Old World monkey from the Cercopithecini tribe. Computational approaches were used to infer the existence of sequence families and to study how these families are organized with respect to each other. While previous studies had suggested that alpha satellites in Old World monkeys were poorly diversified, our analysis provides evidence for the existence of at least four distinct families of sequences within the studied species and of higher order organizational patterns. Fluorescence in situ hybridization using oligonucleotide probes that are able to target each family in a specific way showed that the different families had distinct distributions on chromosomes and were not homogeneously distributed between chromosomes. CONCLUSIONS: Our new approach provides an unprecedented and comprehensive view of the diversity and organization of alpha satellites in a species outside the hominoid group. We consider these data with respect to previously known alpha satellite families and to potential mechanisms for satellite DNA evolution. Applying this approach to other species will open new perspectives regarding the integration of satellite DNA into comparative genomic and cytogenetic studies.


Asunto(s)
Cercopithecus/genética , ADN Satélite , Variación Genética , Genoma , Animales , Centrómero , Cromosomas de los Mamíferos , Secuencia de Consenso , Conjuntos de Datos como Asunto , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Masculino , Filogenia
8.
Sci Rep ; 6: 32459, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561897

RESUMEN

Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues.


Asunto(s)
Hígado/metabolismo , Oryzias/genética , Proteómica , Caracteres Sexuales , Animales , Femenino , Hígado/crecimiento & desarrollo , Masculino , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oryzias/crecimiento & desarrollo , Oryzias/fisiología , Biosíntesis de Proteínas
9.
Hum Reprod ; 29(12): 2821-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25316457

RESUMEN

STUDY QUESTION: Is gene expression in placental tissue of IVF/ICSI patients altered when compared with a spontaneously conceived group, and are these alterations due to loss of imprinting (LOI) in the case of imprinted genes? SUMMARY ANSWER: An altered imprinted gene expression of H19 and Pleckstrin homology-like domain family A member 2 (PHLDA2), which was not due to LOI, was observed in human placentas after IVF/ICSI and several biological pathways were significantly overrepresented and mostly up-regulated. WHAT IS KNOWN ALREADY: Genomic imprinting plays an important role in placental biology and in placental adaptive responses triggered by external stimuli. Changes in placental development and function can have dramatic effects on the fetus and its ability to cope with the intrauterine environment. An increased frequency of placenta-related problems as well as an adverse perinatal outcome is seen in IVF/ICSI derived pregnancies, but the role of placental epigenetic deregulation is not clear yet. STUDY DESIGN AND PARTICIPANTS: In this prospective cohort study, a total of 115 IVF/ICSI and 138 control couples were included during pregnancy. After applying several exclusion criteria (i.e. preterm birth or stillbirth, no placental samples, pregnancy complications or birth defects), respectively, 81 and 105 placentas from IVF/ICSI and control pregnancies remained for analysis. Saliva samples were collected from both parents. METHODS: We quantitatively analysed the mRNA expression of several growth-related imprinted genes [H19, insulin-like growth factor 2 (IGF2), PHLDA2, cyclin-dependent kinase inhibitor 1C (CDKN1C), mesoderm-specific transcript homolog (MEST) isoform α and ß by quantitative PCR] after standardization against three housekeeping genes [Succinate dehydrogenase A (SDHA), YWHAZ and TATA-binding protein (TBP)]. A quantitative allele-specific expression analysis of the differentially expressed imprinted genes was performed to investigate LOI, independent of the mechanism of imprinting. Furthermore, a microarray analysis was carried out (n = 10 in each group) to investigate the expression of non-imprinted genes as well. MAIN RESULTS AND THE ROLE OF CHANCE: Both H19 and PHLDA2 showed a significant change, respectively, a 1.3-fold (P = 0.033) and 1.5-fold (P = 0.002) increase in mRNA expression in the IVF/ICSI versus control group. However, we found no indication that there is an increased frequency of LOI in IVF/ICSI placental samples. Genome-wide mRNA expression revealed 13 significantly overrepresented biological pathways involved in metabolism, immune response, transmembrane signalling and cell cycle control, which were mostly up-regulated in the IVF/ICSI placental samples. LIMITATIONS, REASONS FOR CAUTION: Only a subset of samples was found to be fully informative, which unavoidably led to lower sample numbers for our LOI analysis. Our study cannot distinguish whether the reported differences in the IVF/ICSI group are exclusively attributable to the IVF/ICSI technique itself or to the underlying subfertility of the patients. WIDER IMPLICATIONS OF THE FINDINGS: Whether these placental adaptations observed in pregnancies conceived by IVF/ICSI might be connected to an adverse perinatal outcome after IVF remains unknown. However, it is possible that these differences affect fetal development and long-term patterns of gene expression, as well as maternal gestational physiology. STUDY FUNDING/COMPETING INTERESTS: Partly funded by an unrestricted research grant by Organon BV (now MSD BV) and GROW School for Oncology and Developmental Biology without any role in study design, data collection and analysis or preparation of the manuscript. No conflict of interests to declare. TRIAL REGISTRATION NUMBER: Dutch Trial Registry (NTR) number 1298.


Asunto(s)
Fertilización In Vitro , Impresión Genómica , Placenta/metabolismo , Adulto , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Estudios Prospectivos
10.
Biochim Biophys Acta ; 1824(5): 759-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22446411

RESUMEN

The Ctr9 protein is a member of the Paf1 complex implicated in multiple functions: transcription initiation and elongation by RNA pol II, RNA processing and histone modifications. It has also been described as a triple-helical DNA binding protein. Loss of Ctr9 results in severe phenotypes similar to the loss of Paf1p, a Paf1 complex subunit. However, the exact role of Ctr9 is not entirely established. To study the biological role of the protein Ctr9 in yeast, we used 2-D gel electrophoresis and characterized proteome alterations in a ctr9Δ mutant strain. Here we present results suggesting that Ctr9 has function distinct from its established role in the Paf1 complex. This role could be linked to its ability to bind to DNA complex structures as triplexes that may have function in regulation of gene expression.


Asunto(s)
Proteínas de Ciclo Celular/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Proteínas de Ciclo Celular/deficiencia , ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel Bidimensional , Eliminación de Gen , Proteínas Nucleares/metabolismo , Proteoma , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado , Radioisótopos de Azufre , Transcripción Genética , Factores de Elongación Transcripcional/deficiencia
11.
Chembiochem ; 12(9): 1337-45, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21633996

RESUMEN

DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence-based throughput screening by using a short DNA duplex immobilized on 96-well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC(50) values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure-activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5-azacytidine.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Desarrollo Embrionario/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Pez Cebra/embriología , Animales , Secuencia de Bases , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasas/química , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Bibliotecas de Moléculas Pequeñas/química
12.
PLoS One ; 5(8): e12388, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20808780

RESUMEN

In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)--the enzymes responsible for DNA methylation--are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(beta-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.


Asunto(s)
Citidina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Inhibidores Enzimáticos/farmacología , Animales , Azacitidina/análogos & derivados , Azacitidina/química , Azacitidina/farmacología , Secuencia de Bases , Citidina/química , Citidina/farmacología , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , Decitabina , Humanos , Metilación/efectos de los fármacos , Ratones
13.
Epigenomics ; 2(3): 365-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22121898

RESUMEN

AIMS: The identification of specific biomarkers for colorectal cancer is of primary importance for early diagnosis. The aim of this study was to evaluate if methylation changes at the IGF2/H19 locus could be predictive for individuals at high risk for developing sporadic or hereditary colorectal cancer. MATERIALS & METHODS: Quantitative methylation analysis using pyrosequencing was performed on three differentially methylated regions (DMRs): IGF2 DMR0 and DMR2 and the H19 DMR in DNA samples from sporadic colorectal cancer (n = 26), familial adenomatous polyposis (n = 35) and hereditary nonpolyposis colorectal cancer (n = 19) patients. RESULTS: We report in this article for the first time, that in sporadic colorectal cancer tumor DNA both the IGF2 DMR0 and DMR2 are hypomethylated, while the H19 DMR retains its monoallelic methylation pattern. In lymphocyte DNA, a striking hypomethylation of nine contiguous correlated CpGs was found in the IGF2 DMR2 but only in familial adenomatous polyposis patients. CONCLUSION: Methylation alterations at the IGF2 locus are more extensive than previously reported and DMR2 hypomethylation in lymphocyte DNA might be a specific epigenetic biomarker for familial adenomatous polyposis patients.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Biomarcadores/metabolismo , Neoplasias Colorrectales/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Factor II del Crecimiento Similar a la Insulina/genética , Análisis por Conglomerados , Francia , Humanos , Linfocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/métodos , Sulfitos
14.
Genome Res ; 18(9): 1403-14, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18550801

RESUMEN

The neutral mutation rate is equal to the base substitution rate when the latter is not affected by natural selection. Differences between these rates may reveal that factors such as natural selection, linkage, or a mutator locus are affecting a given sequence. We examined the neutral base substitution rate by measuring the sequence divergence of approximately 30,000 pairs of inactive orthologous L1 retrotransposon sequences interspersed throughout the human and chimpanzee genomes. In contrast to other studies, we related ortholog divergence to the time (age) that the L1 sequences resided in the genome prior to the chimpanzee and human speciation. As expected, the younger orthologs contained more hypermutable CpGs than the older ones because of their conversion to TpGs (and CpAs). Consequently, the younger orthologs accumulated more CpG mutations than the older ones during the approximately 5 million years since the human and chimpanzee lineages separated. But during this same time, the younger orthologs also accumulated more non-CpG mutations than the older ones. In fact, non-CpG and CpG mutations showed an almost perfect (R2 = 0.98) correlation for approximately 97% of the ortholog pairs. The correlation is independent of G + C content, recombination rate, and chromosomal location. Therefore, it likely reflects an intrinsic effect of CpGs, or mutations thereof, on non-CpG DNA rather than the joint manifestation of the chromosomal environment. The CpG effect is not uniform for all regions of non-CpG DNA. Therefore, the mutation rate of non-CpG DNA is contingent to varying extents on local CpG content. Aside from their implications for mutational mechanisms, these results indicate that a precise determination of a uniform genome-wide neutral mutation rate may not be attainable.


Asunto(s)
Islas de CpG , Mutación , Animales , ADN/química , Elementos Transponibles de ADN , Femenino , Genoma , Humanos , Masculino , Mamíferos , Modelos Genéticos , Análisis de Secuencia de ADN
15.
PLoS Comput Biol ; 2(9): e115, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16948529

RESUMEN

In Arabidopsis, tandemly arrayed genes (TAGs) comprise >10% of the genes in the genome. These duplicated genes represent a rich template for genetic innovation, but little is known of the evolutionary forces governing their generation and maintenance. Here we compare the organization and evolution of TAGs between Arabidopsis and rice, two plant genomes that diverged ~150 million years ago. TAGs from the two genomes are similar in a number of respects, including the proportion of genes that are tandemly arrayed, the number of genes within an array, the number of tandem arrays, and the dearth of TAGs relative to single copy genes in centromeric regions. Analysis of recombination rates along rice chromosomes confirms a positive correlation between the occurrence of TAGs and recombination rate, as found in Arabidopsis. TAGs are also biased functionally relative to duplicated, nontandemly arrayed genes. In both genomes, TAGs are enriched for genes that encode membrane proteins and function in "abiotic and biotic stress" but underrepresented for genes involved in transcription and DNA or RNA binding functions. We speculate that these observations reflect an evolutionary trend in which successful tandem duplication involves genes either at the end of biochemical pathways or in flexible steps in a pathway, for which fluctuation in copy number is unlikely to affect downstream genes. Despite differences in the age distribution of tandem arrays, the striking similarities between rice and Arabidopsis indicate similar mechanisms of TAG generation and maintenance.


Asunto(s)
Arabidopsis/genética , Genes Duplicados/genética , Genes de Plantas/genética , Genoma de Planta/genética , Genómica , Oryza/genética , Cromosomas de las Plantas/genética , Biología Computacional , Simulación por Computador , Recombinación Genética/genética , Sensibilidad y Especificidad
16.
Mol Biol Evol ; 22(4): 1119-28, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15689527

RESUMEN

In eukaryotes, C5-cytosine methylation is a common mechanism associated with a variety of functions such as gene regulation or control of genomic stability. Different subfamilies of eukaryotic methyltransferases (MTases) have been identified, mainly in metazoa, plants, and fungi. In this paper, we used hidden Markov models to detect MTases in completed or almost completed eukaryotic genomes, including different species of Protozoa. A phylogenetic analysis of MTases enabled us to define six subfamilies of MTases, including two new subfamilies. The dnmt1 subfamily that includes all the known MTases with a maintenance activity seems to be absent in the Protozoa. The dnmt2 subfamily seems to be the most widespread, being present even in the nonmethylated Dictyostelium discoideum. We also found two dnmt2 members in the bacterial genus Geobacter, suggesting that horizontal transfers of MTases occurred between eukaryotes and prokaryotes. Even if the direction of transfer cannot be determined, this relationship might be useful for understanding the function of this enigmatic subfamily of MTases. Globally, our analysis reveals a great diversity of MTases in eukaryotes, suggesting the existence of different methylation systems. Our results also suggest acquisitions and losses of different MTases in every eukaryotic lineage studied and that some eukaryotes appear to be devoid of methylation.


Asunto(s)
Metilasas de Modificación del ADN/genética , Evolución Molecular , Genoma , Metilasas de Modificación del ADN/metabolismo , Células Eucariotas , Filogenia
17.
Bioinformatics ; 18(4): 631-3, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12016061

RESUMEN

RESULTS: CpGProD is an application for identifying mammalian promoter regions associated with CpG islands in large genomic sequences. Although it is strictly dedicated to this particular promoter class corresponding to approximately 50% of the genes, CpGProD exhibits a higher sensitivity and specificity than other tools used for promoter prediction. Notably, CpGProD uses different parameters according to species (human, mouse) studied. Moreover, CpGProD predicts the promoter orientation on the DNA strand. AVAILABILITY: http://pbil.univ-lyon1.fr/software/cpgprod.html SUPPLEMENTARY INFORMATION: http://pbil.univ-lyon1.fr/software/cpgprod.html


Asunto(s)
Islas de CpG/genética , Bases de Datos de Proteínas , Genoma Humano , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Sitio de Iniciación de la Transcripción , Animales , Exones , Humanos , Almacenamiento y Recuperación de la Información/métodos , Intrones , Ratones , Datos de Secuencia Molecular , Reconocimiento de Normas Patrones Automatizadas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...