Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Adv ; 10(15): eadj1444, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598637

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via µPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Animales , Ratones , Distribución Tisular , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Péptidos/metabolismo , Bleomicina
2.
J Vasc Interv Radiol ; 35(6): 900-908.e2, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508448

RESUMEN

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.


Asunto(s)
Doxorrubicina , Ratones Endogámicos BALB C , Microambiente Tumoral , Animales , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Femenino , Línea Celular Tumoral , Ratones , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/cirugía , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias de la Mama/patología , Transductores , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Polietilenglicoles/química , Modelos Animales de Enfermedad , Antígenos Comunes de Leucocito
3.
Acta Biomater ; 177: 253-264, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272198

RESUMEN

Cells respond to the stiffness of their surrounding environment, but quantifying the stiffness of a fibrous matrix at the scale of a cell is complicated, due to the effects of nonlinearity and complex force transmission pathways resulting from randomness in fiber density and connections. While it is known that forces produced by individual contractile cells can stiffen the matrix, it remains unclear how simultaneous contraction of multiple cells in a fibrous matrix alters the stiffness at the scale of a cell. Here, we used computational modeling and experiments to quantify the stiffness of a random fibrous matrix embedded with multiple contracting inclusions, which mimicked the contractile forces of a cell. The results showed that when the matrix was free to contract as a result of the forces produced by the inclusions, the matrix softened rather than stiffened, which was surprising given that the contracting inclusions applied tensile forces to the matrix. Using the computational model, we identified that the underlying cause of the softening was that the majority of the fibers were under a local state of axial compression, causing buckling. We verified that this buckling-induced matrix softening was sufficient for cells to sense and respond by altering their morphology and force generation. Our findings reveal that the localized forces induced by cells do not always stiffen the matrix; rather, softening can occur in instances wherein the matrix can contract in response to the cell-generated forces. This study opens up new possibilities to investigate whether cell-induced softening contributes to maintenance of homeostatic conditions or progression of disease. STATEMENT OF SIGNIFICANCE: Mechanical interactions between cells and the surrounding matrix strongly influence cellular functions. Cell-induced forces can alter matrix properties, and much prior literature in this area focused on the influence of individual contracting cells. Cells in tissues are rarely solitary; rather, they are interspersed with neighboring cells throughout the matrix. As a result, the mechanics are complicated, leaving it unclear how the multiple contracting cells affect matrix stiffness. Here, we show that multiple contracting inclusions within a fibrous matrix can cause softening that in turn affects cell sensing and response. Our findings provide new directions to determine impacts of cell-induced softening on maintenance of tissue or progression of disease.


Asunto(s)
Matriz Extracelular , Fenómenos Mecánicos , Matriz Extracelular/metabolismo , Fenómenos Físicos , Presión , Simulación por Computador
4.
Breast Cancer Res ; 25(1): 68, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312163

RESUMEN

BACKGROUND: Most patients with estrogen receptor positive (ER+) breast cancer do not respond to immune checkpoint inhibition (ICI); the tumor microenvironment (TME) of these cancers is generally immunosuppressive and contains few tumor-infiltrating lymphocytes. Radiation therapy (RT) can increase tumor inflammation and infiltration by lymphocytes but does not improve responses to ICIs in these patients. This may result, in part, from additional effects of RT that suppress anti-tumor immunity, including increased tumor infiltration by myeloid-derived suppressor cells and regulatory T cells. We hypothesized that anti-estrogens, which are a standard of care for ER+ breast cancer, may ameliorate these detrimental effects of RT by reducing the recruitment/ activation of suppressive immune populations in the radiated TME, increasing anti-tumor immunity and responsiveness to ICIs. METHODS: To interrogate the effect of the selective estrogen receptor downregulator, fulvestrant, on the irradiated TME in the absence of confounding growth inhibition by fulvestrant on tumor cells, we used the TC11 murine model of anti-estrogen resistant ER+ breast cancer. Tumors were orthotopically transplanted into immunocompetent syngeneic mice. Once tumors were established, we initiated treatment with fulvestrant or vehicle, followed by external beam RT one week later. We examined the number and activity of tumor infiltrating immune cells using flow cytometry, microscopy, transcript levels, and cytokine profiles. We tested whether fulvestrant improved tumor response and animal survival when added to the combination of RT and ICI. RESULTS: Despite resistance of TC11 tumors to anti-estrogen therapy alone, fulvestrant slowed tumor regrowth following RT, and significantly altered multiple immune populations in the irradiated TME. Fulvestrant reduced the influx of Ly6C+Ly6G+ cells, increased markers of pro-inflammatory myeloid cells and activated T cells, and augmented the ratio of CD8+: FOXP3+ T cells. In contrast to the minimal effects of ICIs when co-treated with either fulvestrant or RT alone, combinatorial treatment with fulvestrant, RT and ICIs significantly reduced tumor growth and prolonged survival. CONCLUSIONS: A combination of RT and fulvestrant can overcome the immunosuppressive TME in a preclinical model of ER+ breast cancer, enhancing the anti-tumor response and increasing the response to ICIs, even when growth of tumor cells is no longer estrogen sensitive.


Asunto(s)
Neoplasias , Receptores de Estrógenos , Animales , Ratones , Fulvestrant/farmacología , Inmunoterapia , Estrógenos , Antagonistas de Estrógenos , Inmunosupresores
5.
APL Bioeng ; 7(1): 016111, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36875739

RESUMEN

High-grade serous ovarian cancer (HGSOC) metastasizes through transcoelomic spread, with both single cells and spheroids of tumor cells observed in patient ascites. These spheroids may form through single cells that detach and aggregate (Sph-SC) or through collective detachment (Sph-CD). We developed an in vitro model to generate and separate Sph-SC from Sph-CD to enable study of Sph-CD in disease progression. In vitro-generated Sph-CD and spheroids isolated from ascites were similar in size (mean diameter 51 vs 55 µm, p > 0.05) and incorporated multiple ECM proteins. Using the in vitro model, nascent protein labeling, and qRT-PCR, we determined that ECM was produced after detachment. As fibronectin plays a key role in many cell adhesion events, we confirmed that inhibiting RGD-based adhesion or fibronectin assembly reduced Sph-CD-mesothelial adhesion strength under shear stress. Our model will enable future studies to determine factors that favor formation of Sph-CD, as well as allow investigators to manipulate Sph-CD to better study their effects on HGSOC progression.

6.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L335-L344, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719987

RESUMEN

Nephronectin (NPNT) is a basement membrane (BM) protein and high-affinity ligand of integrin α8ß1 that is required for kidney morphogenesis in mice. In the lung, NPNT also localizes to BMs, but its potential role in pulmonary development has not been investigated. Mice with a floxed Npnt allele were used to generate global knockouts (KOs). Staged embryos were obtained by timed matings of heterozygotes and lungs were isolated for analysis. Although primary and secondary lung bud formation was normal in KO embryos, fusion of right lung lobes, primarily the medial and caudal, was first detected at E13.5 and persisted into adulthood. The lung parenchyma of KO mice was indistinguishable from wild-type (WT) and lobe fusion did not alter respiratory mechanics in adult KO mice. Interrogation of an existing single-cell RNA-seq atlas of embryonic and adult mouse lungs identified Npnt transcripts in mesothelial cells at E12.5 and into the early postnatal period, but not in adult lungs. KO embryonic lungs exhibited increased expression of laminin α5 and deposition of collagen IV in the mesothelial BM, accompanied by abnormalities in collagen fibrils in the adjacent stroma. Cranial and accessory lobes extracted from KO embryonic lungs fused ex vivo when cultured in juxtaposition, with the area of fusion showing loss of the mesothelial marker Wilms tumor 1. Because a similar pattern of lobe fusion was previously observed in integrin α8 KO embryos, our results suggest that NPNT signaling through integrin α8, likely in the visceral pleura, maintains right lung lobe separation during embryogenesis.


Asunto(s)
Proteínas de la Matriz Extracelular , Proteínas de la Membrana , Animales , Ratones , Proteínas de la Matriz Extracelular/genética , Desarrollo Embrionario/genética , Pulmón/metabolismo , Colágeno
7.
J Mech Behav Biomed Mater ; 135: 105465, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36154991

RESUMEN

As fibrous collagen is the most abundant protein in mammalian tissues, gels of collagen fibers have been extensively used as an extracellular matrix scaffold to study how cells sense and respond to cues from their microenvironment. Other components of native tissues, such as glycosaminoglycans like hyaluronic acid, can affect cell behavior in part by changing the mechanical properties of the collagen gel. Prior studies have quantified the effects of hyaluronic acid on the mechanical properties of collagen gels in experiments of uniform shear or compression at the macroscale. However, there remains a lack of experimental studies of how hyaluronic acid changes the mechanical properties of collagen gels at the scale of a cell. Here, we studied how addition of hyaluronic acid to gels of collagen fibers affects the local field of displacements in response to contractile loads applied on length scales similar to those of a contracting cell. Using spherical poly(N-isopropylacrylamide) particles, which contract when heated, we induced displacement in gels of collagen and collagen with hyaluronic acid. Displacement fields were quantified using a combination of confocal microscopy and digital image correlation. Results showed that hyaluronic acid suppressed the distance over which displacements propagated, suggesting that it caused the network to become more linear. Additionally, hyaluronic acid had no statistical effect on heterogeneity of the displacement fields, but it did make the gels more elastic by substantially reducing the magnitude of permanent deformations. Lastly, we examined the effect of hyaluronic acid on fiber remodeling due to localized forces and found that hyaluronic acid partially - but not fully - inhibited remodeling. This result is consistent with prior studies suggesting that fiber remodeling is associated with a phase transition resulting from an instability caused by nonlinearity of the collagen gel.


Asunto(s)
Colágeno , Ácido Hialurónico , Animales , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Geles , Ácido Hialurónico/farmacología , Mamíferos , Microscopía Confocal
8.
J Control Release ; 350: 284-297, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995299

RESUMEN

In breast cancer, the extracellular matrix (ECM) undergoes remodeling and changes the tumor microenvironment to support tumor progression and metastasis. Fibronectin (FN) assembly is an important step in the regulation of the tumor microenvironment since the FN matrix precedes the deposition of various other ECM proteins, controls immune cell infiltration, and serves as a reservoir for cytokines and growth factors. Therefore, FN is an attractive target for breast cancer therapy and imaging. Functional Upstream Domain (FUD) is a 6-kDa peptide targeting the N-terminal 70-kDa domain of FN, which is critical for fibrillogenesis. FUD has previously been shown to function as an anti-fibrotic peptide both in vitro and in vivo. In this work, we conjugated the FUD peptide with 20-kDa of PEG (PEG-FUD) and demonstrated its improved tumor exposure compared to non-PEGylated FUD in a murine breast cancer model via multiple imaging modalities. Importantly, PEG-FUD peptide retained a nanomolar binding affinity for FN and maintained in vitro plasma stability for up to 48 h. Cy5-labeled PEG-FUD bound to exogenous or endogenous FN assembled by fibroblasts. The in vivo fluorescence imaging with Cy5-labeled FUD and FUD conjugates demonstrated that PEGylation of the FUD peptide enhanced blood exposure after subcutaneous (SC) injection and significantly increased accumulation of FUD peptide in 4T1 mammary tumors. Intravital microscopy confirmed that Cy5-labeled PEG-FUD deposited mostly in the extravascular region of the tumor microenvironment after SC administration. Lastly, positron emission tomography/computed tomography imaging showed that 64Cu-labeled PEG-FUD preferentially accumulated in the 4T1 tumors with improved tumor uptake compared to 64Cu-labeled FUD (48 h: 1.35 ± 0.05 vs. 0.59 ± 0.03 %IA/g, P < 0.001) when injected intravenously (IV). The results indicate that PEG-FUD targets 4T1 breast cancer with enhanced tumor retention compared to non-PEGylated FUD, and biodistribution profiles of PEG-FUD after SC and IV injection may guide the optimization of PEG-FUD as a therapeutic and/or imaging agent for use in vivo.


Asunto(s)
Neoplasias de la Mama , Fibronectinas , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Carbocianinas , Citocinas/metabolismo , Femenino , Fibronectinas/metabolismo , Humanos , Ratones , Imagen Multimodal , Péptidos/química , Distribución Tisular , Microambiente Tumoral
9.
J Vis Exp ; (183)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35695521

RESUMEN

The ability to visualize complex and dynamic physiological interactions between numerous cell types and the extracellular matrix (ECM) within a live tumor microenvironment is an important step toward understanding mechanisms that regulate tumor progression. While this can be accomplished through current intravital imaging techniques, it remains challenging due to the heterogeneous nature of tissues and the need for spatial context within the experimental observation. To this end, we have developed an intravital imaging workflow that pairs collagen second harmonic generation imaging, endogenous fluorescence from the metabolic co-factor NAD(P)H, and fluorescence lifetime imaging microscopy (FLIM) as a means to non-invasively compartmentalize the tumor microenvironment into basic domains of the tumor nest, the surrounding stroma or ECM, and the vasculature. This non-invasive protocol details the step-by-step process ranging from the acquisition of time-lapse images of mammary tumor models to post-processing analysis and image segmentation. The primary advantage of this workflow is that it exploits metabolic signatures to contextualize the dynamically changing live tumor microenvironment without the use of exogenous fluorescent labels, making it advantageous for human patient-derived xenograft (PDX) models and future clinical use where extrinsic fluorophores are not readily applicable.


Asunto(s)
Neoplasias Mamarias Animales , Microambiente Tumoral , Animales , Matriz Extracelular/metabolismo , Humanos , Microscopía Intravital , Neoplasias Mamarias Animales/metabolismo , Microscopía Fluorescente/métodos
11.
Oncogene ; 41(19): 2764-2777, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35414659

RESUMEN

Previous therapeutic attempts to deplete cancer-associated fibroblasts (CAFs) or inhibit their proliferation in pancreatic ductal adenocarcinoma (PDAC) were not successful in mice or patients. Thus, CAFs may be tumor suppressive or heterogeneous, with distinct cancer-restraining and -promoting CAFs (rCAFs and pCAFs, respectively). Here, we showed that induced expression of the glycosylphosphatidylinositol-anchored protein Meflin, a rCAF-specific marker, in CAFs by genetic and pharmacological approaches improved the chemosensitivity of mouse PDAC. A chemical library screen identified Am80, a synthetic, nonnatural retinoid, as a reagent that effectively induced Meflin expression in CAFs. Am80 administration improved the sensitivity of PDAC to chemotherapeutics, accompanied by increases in tumor vessel area and intratumoral drug delivery. Mechanistically, Meflin was involved in the suppression of tissue stiffening by interacting with lysyl oxidase to inhibit its collagen crosslinking activity. These data suggested that modulation of CAF heterogeneity may represent a strategy for PDAC treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35267548

RESUMEN

The heterogenous nature of triple-negative breast cancer (TNBC) is an underlying factor in therapy resistance, metastasis, and overall poor patient outcome. The lack of hormone and growth factor receptors lends to the use of chemotherapy as the first-line treatment for TNBC. However, the failure of chemotherapy demonstrates the need to develop novel immunotherapies, antibody-drug conjugates (ADCs), and other tumor- and stromal-targeted therapeutics for TNBC patients. The potential for stromal-targeted therapy is driven by studies indicating that the interactions between tumor cells and the stromal extracellular matrix (ECM) activate mechanisms of therapy resistance. Here, we will review recent outcomes from clinical trials targeting metastatic TNBC with immunotherapies aimed at programed death ligand-receptor interactions, and ADCs specifically linked to trophoblast cell surface antigen 2 (Trop-2). We will discuss how biophysical and biochemical cues from the ECM regulate the pathophysiology of tumor and stromal cells toward a pro-tumor immune environment, therapy resistance, and poor TNBC patient outcome. Moreover, we will highlight how ECM-mediated resistance is motivating the development of new stromal-targeted therapeutics with potential to improve therapy for this disease.

13.
EBioMedicine ; 73: 103634, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34673450

RESUMEN

BACKGROUND: In head and neck cancer, intratumour lymphatic density and tumour lymphangiogenesis have been correlated with lymphatic metastasis, making lymphangiogenesis a promising therapeutic target. However, inter-patient tumour heterogeneity makes it challenging to predict tumour progression and lymph node metastasis. Understanding the lymphangiogenic-promoting factors leading to metastasis (e.g., tumour-derived fibroblasts or TDF), would help develop strategies to improve patient outcomes. METHODS: A microfluidic in vitro model of a tubular lymphatic vessel was co-cultured with primary TDF from head and neck cancer patients to evaluate the effect of TDF on lymphangiogenesis. We assessed the length and number of lymphangiogenic sprouts and vessel permeability via microscopy and image analysis. Finally, we characterised lymphatic vessel conditioning by TDF via RT-qPCR. FINDINGS: Lymphatic vessels were conditioned by the TDF in a patient-specific manner. Specifically, the presence of TDF induced sprouting, altered vessel permeability, and increased the expression of pro-lymphangiogenic genes. Gene expression and functional responses in the fibroblast-conditioned lymphatic vessels were consistent with the patient tumour stage and lymph node status. IGF-1, upregulated among patients, was targeted to validate our personalised medicine approach. Interestingly, IGF-1 blockade was not effective across different patients. INTERPRETATION: The use of lymphatic organotypic models incorporating head and neck TDF provides insight into the pathways leading to lymphangiogenesis in each patient. This model provided a platform to test anti-angiogenic therapeutics and inform of their effectiveness for individual patients. FUNDING: NIH R33CA225281. Wisconsin Head and Neck SPORE NIH P50DE026787. NIH R01AI34749.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias de Cabeza y Cuello/patología , Linfangiogénesis , Neovascularización Patológica , Biomarcadores , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Técnicas de Cocultivo , Técnica del Anticuerpo Fluorescente , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Inmunohistoquímica , Neovascularización Patológica/metabolismo , Organoides
14.
Elife ; 102021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34231467

RESUMEN

The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among ß cells, yet testing this in vivo in the intact pancreas is challenging. Robo ßKO mice, in which the genes Robo1 and Robo2 are deleted selectively in ß cells, provide a unique model of altered islet spatial architecture without loss of ß cell differentiation or islet damage from diabetes. Combining Robo ßKO mice with intravital microscopy, we show here that Robo ßKO islets have reduced synchronized intra-islet Ca2+ oscillations among ß cells in vivo. We provide evidence that this loss is not due to a ß cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.


Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo , Animales , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Proteína delta-6 de Union Comunicante , Proteínas Roundabout
15.
Soft Matter ; 17(45): 10263-10273, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34125129

RESUMEN

Cells sense mechanical signals within the extracellular matrix, the most familiar being stiffness, but matrix stiffness cannot be simply described by a single value. Randomness in matrix structure causes stiffness at the scale of a cell to vary by more than an order of magnitude. Additionally, the extracellular matrix contains ducts, blood vessels, and, in cancer or fibrosis, regions with abnormally high stiffness. These different features could alter the stiffness sensed by a cell, but it is unclear whether the change in stiffness is large enough to overcome the noise caused by heterogeneity due to the random fibrous structure. Here we used a combination of experiments and modeling to determine the extent to which matrix heterogeneity disrupts the potential for cell sensing of a locally stiff feature in the matrix. Results showed that, at the scale of a single cell, spatial heterogeneity in local stiffness was larger than the increase in stiffness due to a stiff feature. The heterogeneity was reduced only for large length scales compared to the fiber length. Experiments verified this conclusion, showing spheroids of cells, which were large compared to the average fiber length, spreading preferentially toward stiff inclusions. Hence, the propagation of mechanical cues through the matrix depends on length scale, with single cells being able to sense only the stiffness of the nearby fibers and multicellular structures, such as tumors, also sensing the stiffness of distant matrix features.


Asunto(s)
Matriz Extracelular , Mecanorreceptores , Fenómenos Fisiológicos Celulares
16.
Acta Biomater ; 129: 96-109, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965625

RESUMEN

It is well established that collagen alignment in the breast tumor microenvironment provides biophysical cues to drive disease progression. Numerous mechanistic studies have demonstrated that tumor cell behavior is driven by the architecture and stiffness of the collagen matrix. However, the mechanical properties within a 3D collagen microenvironment, particularly at the scale of the cell, remain poorly defined. To investigate cell-scale mechanical cues with respect to local collagen architecture, we employed a combination of intravital imaging of the mammary tumor microenvironment and a 3D collagen gel system with both acellular pNIPAAm microspheres and MDA-MB-231 breast carcinoma cells. Within the in vivo tumor microenvironment, the displacement of collagen fiber was identified in response to tumor cells migrating through the stromal matrix. To further investigate cell-scale stiffness in aligned fiber architectures and the propagation of cell-induced fiber deformations, precise control of collagen architecture was coupled with innovative methodology to measure mechanical properties of the collagen fiber network. This method revealed up to a 35-fold difference in directional cell-scale stiffness resulting from contraction against aligned fibers. Furthermore, the local anisotropy of the matrix dramatically altered the rate at which contractility-induced fiber displacements decayed over distance. Together, our results reveal mechanical properties in aligned matrices that provide dramatically different cues to the cell in perpendicular directions. These findings are supported by the mechanosensing behavior of tumor cells and have important implications for cell-cell communication within the tissue microenvironment. STATEMENT OF SIGNIFICANCE: It is widely appreciated that the architecture of the extracellular matrix impacts cellular behavior in normal and disease states. Numerous studies have determined the fundamental role of collagen matrix architecture on cellular mechanosensing, but effectively quantifying anisotropic mechanical properties of the collagen matrix at the cell-scale remains challenging. Here, we developed innovative methodology to discover that collagen alignment results in a 35-fold difference in cell-scale stiffness and alters contractile force transmission through the fiber network. Furthermore, we identified bias in cell response along the axis of alignment, where local stiffness is highest. Overall, our results define cell-scale stiffness and fiber deformations due to collagen architecture that may instruct cell communication within a broad range of tissue microenvironments.


Asunto(s)
Señales (Psicología) , Microambiente Tumoral , Comunicación Celular , Línea Celular Tumoral , Colágeno , Matriz Extracelular , Humanos
17.
Metabolites ; 11(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925445

RESUMEN

This study uses dynamic hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) to estimate differences in glycolytic metabolism between highly metastatic (4T1, n = 7) and metastatically dormant (4T07, n = 7) murine breast cancer models. The apparent conversion rate of pyruvate-to-lactate (kPL) and lactate-to-pyruvate area-under-the-curve ratio (AUCL/P) were estimated from the metabolite images and compared with biochemical metabolic measures and immunohistochemistry (IHC). A non-significant trend of increasing kPL (p = 0.17) and AUCL/P (p = 0.11) from 4T07 to 4T1 tumors was observed. No significant differences in tumor IHC lactate dehydrogenase-A (LDHA), monocarboxylate transporter-1 (MCT1), cluster of differentiation 31 (CD31), and hypoxia inducible factor-α (HIF-1α), tumor lactate-dehydrogenase (LDH) activity, or blood lactate or glucose levels were found between the two tumor lines. However, AUCL/P was significantly correlated with tumor LDH activity (ρspearman = 0.621, p = 0.027) and blood glucose levels (ρspearman = -0.474, p = 0.042). kPL displayed a similar, non-significant trend for LDH activity (ρspearman = 0.480, p = 0.114) and blood glucose levels (ρspearman = -0.414, p = 0.088). Neither kPL nor AUCL/P were significantly correlated with blood lactate levels or tumor LDHA or MCT1. The significant positive correlation between AUCL/P and tumor LDH activity indicates the potential of AUCL/P as a biomarker of glycolytic metabolism in breast cancer models. However, the lack of a significant difference between in vivo tumor metabolism for the two models suggest similar pyruvate-to-lactate conversion despite differing metastatic potential.

18.
Biomaterials ; 270: 120640, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33592387

RESUMEN

In cancer metastasis, extravasation refers to the process where tumor cells exit the bloodstream by crossing the endothelium and invade the surrounding tissue. Tumor cells engage in complex crosstalk with other active players such as the endothelium leading to changes in functional behavior that exert pro-extravasation effects. Most in vitro studies to date have only focused on the independent effects of molecular targets on the functional changes of cancer cell extravasation behavior. However, singular targets cannot combat complex interactions involved in tumor cell extravasation that affects multiple cell types and signaling pathways. In this study, we employ an organotypic microfluidic model of human vasculature to investigate the independent and combined role of multiple upregulated secreted factors resulting from cancer-vascular interactions during cancer cell extravasation. The device consists of a tubular endothelial vessel generated from induced pluripotent stem cell derived endothelial cells within a collagen-fibrinogen matrix with breast cancer cells injected through and cultured along the lumen of the vessel. Our system identified cancer-vascular crosstalk, involving invasive breast cancer cells, that results in increased levels of secreted IL-6, IL-8, and MMP-3. Our model also showed that upregulation of these secreted factors correlates with invasive/metastatic potential of breast cancer cells. We also used therapeutic inhibitors to assess the independent and combined role of multiple signaling factors on the overall changes in functional behavior of both the cancer cells and the endothelium that promote extravasation. Taken together, these results demonstrate the potential of our organotypic model in elucidating mechanisms through which cancer-vascular interactions can promote extravasation, and in conducting functional assessment of therapeutic drugs that prevent extravasation in cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Células Endoteliales , Línea Celular Tumoral , Humanos , Microfluídica , Comunicación Paracrina
19.
Anal Chem ; 92(24): 15693-15698, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33232116

RESUMEN

The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.


Asunto(s)
Compuestos Azo/química , Matriz Extracelular/química , Proteínas de Neoplasias/análisis , Proteómica , Tensoactivos/química , Animales , Antígenos Transformadores de Poliomavirus/química , Matriz Extracelular/metabolismo , Virus del Tumor Mamario del Ratón/química , Espectrometría de Masas , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/metabolismo , Procesos Fotoquímicos , Solubilidad
20.
J Clin Invest ; 130(11): 5721-5737, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32721948

RESUMEN

Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density. Culture studies demonstrated that ZNF217 mediates a matrix stiffness- and collagen density-induced increase in Akt activity and mammary epithelial cell proliferation. Manipulation of the epithelium in a mouse model of mammographic density supported a causal relationship between stromal stiffness, reduced miR-203, higher levels of the murine homolog Zfp217, and increased Akt activity and mammary epithelial proliferation. ZNF217 was also increased in the normal breast epithelium of women with high mammographic density, correlated positively with epithelial proliferation and density, and inversely with miR-203. The findings identify ZNF217 as a potential target toward which preexisting therapies, such as the Akt inhibitor triciribine, could be used as a chemopreventive agent to reduce cancer risk in women with high mammographic density.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Proteínas Oncogénicas/metabolismo , Transactivadores/metabolismo , Adulto , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Método Doble Ciego , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Neoplásico/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...