Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 236(4): 1339-1357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35946374

RESUMEN

A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Péptido Hidrolasas/metabolismo , Proteoma/metabolismo
2.
J Biol Chem ; 298(3): 101609, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065075

RESUMEN

The chloroplast chaperone CLPC1 unfolds and delivers substrates to the stromal CLPPRT protease complex for degradation. We previously used an in vivo trapping approach to identify interactors with CLPC1 in Arabidopsis thaliana by expressing a STREPII-tagged copy of CLPC1 mutated in its Walker B domains (CLPC1-TRAP) followed by affinity purification and mass spectrometry. To create a larger pool of candidate substrates, adaptors, or regulators, we carried out a far more sensitive and comprehensive in vivo protein trapping analysis. We identified 59 highly enriched CLPC1 protein interactors, in particular proteins belonging to families of unknown functions (DUF760, DUF179, DUF3143, UVR-DUF151, HugZ/DUF2470), as well as the UVR domain proteins EXE1 and EXE2 implicated in singlet oxygen damage and signaling. Phylogenetic and functional domain analyses identified other members of these families that appear to localize (nearly) exclusively to plastids. In addition, several of these DUF proteins are of very low abundance as determined through the Arabidopsis PeptideAtlas http://www.peptideatlas.org/builds/arabidopsis/ showing that enrichment in the CLPC1-TRAP was extremely selective. Evolutionary rate covariation indicated that the HugZ/DUF2470 family coevolved with the plastid CLP machinery suggesting functional and/or physical interactions. Finally, mRNA-based coexpression networks showed that all 12 CLP protease subunits tightly coexpressed as a single cluster with deep connections to DUF760-3. Coexpression modules for other trapped proteins suggested specific functions in biological processes, e.g., UVR2 and UVR3 were associated with extraplastidic degradation, whereas DUF760-6 is likely involved in senescence. This study provides a strong foundation for discovery of substrate selection by the chloroplast CLP protease system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteínas de Choque Térmico , Plastidios , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Filogenia , Plastidios/genética , Plastidios/metabolismo , Proteómica
3.
Pathogens ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915780

RESUMEN

Listeria monocytogenes can regulate and fine-tune gene expression, to adapt to diverse stress conditions encountered during foodborne transmission. To further understand the contributions of alternative sigma (σ) factors to the regulation of L. monocytogenes gene expression, RNA-Seq was performed on L. monocytogenes strain 10403S and five isogenic mutants (four strains bearing in-frame null mutations in three out of four alternative σ factor genes, ΔCHL, ΔBHL, ΔBCL, and ΔBCH, and one strain bearing null mutations in all four genes, ΔBCHL), grown to stationary phase. Our data showed that 184, 35, 34, and 20 genes were positively regulated by σB, σL, σH, and σC (posterior probability > 0.9 and Fold Change (FC) > 5.0), respectively. Moreover, σB-dependent genes showed the highest FC (based on comparisons between the ΔCHL and the ΔBCHL strain), with 44 genes showing an FC > 100; only four σL-dependent, and no σH- or σC-dependent genes showed FC >100. While σB-regulated genes identified in this study are involved in stress-associated functions and metabolic pathways, σL appears to largely regulate genes involved in a few specific metabolic pathways, including positive regulation of operons encoding phosphoenolpyruvate (PEP)-dependent phosphotransferase systems (PTSs). Overall, our data show that (i) σB and σL directly and indirectly regulate genes involved in several energy metabolism-related functions; (ii) alternative σ factors are involved in complex regulatory networks and appear to have epistatic effects in stationary phase cells; and (iii) σB regulates multiple stress response pathways, while σL and σH positively regulate a smaller number of specific pathways.

4.
J Exp Bot ; 72(13): 4663-4679, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33884419

RESUMEN

Plastoglobules are dynamic protein-lipid microcompartments in plastids enriched for isoprenoid-derived metabolites. Chloroplast plastoglobules support formation, remodeling, and controlled dismantling of thylakoids during developmental transitions and environmental responses. However, the specific molecular functions of most plastoglobule proteins are still poorly understood. This review harnesses recent co-mRNA expression data from combined microarray and RNA-seq information in ATTED-II on an updated inventory of 34 PG proteins, as well as proteomics data across 30 Arabidopsis tissue types from ATHENA. Hierarchical clustering based on relative abundance for the plastoglobule proteins across non-photosynthetic and photosynthetic tissue types showed their coordinated protein accumulation across Arabidopsis parts, tissue types, development, and senescence. Evaluation of mRNA-based forced networks at different coefficient thresholds identified a central hub with seven plastoglobule proteins and four peripheral modules. Enrichment of specific nuclear transcription factors (e.g. Golden2-like) and support for crosstalk between plastoglobules and the plastid gene expression was observed, and specific ABC1 kinases appear part of a light signaling network. Examples of other specific findings are that FBN7b is involved with upstream steps of tetrapyrrole biosynthesis and that ABC1K9 is involved in starch metabolism. This review provides new insights into the functions of plastoglobule proteins and an improved framework for experimental studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos , Redes Reguladoras de Genes , Plastidios/genética , Proteoma/genética , Tilacoides
5.
Plant Physiol ; 184(1): 110-129, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663165

RESUMEN

Chloroplast proteostasis is governed by a network of peptidases. As a part of this network, we show that Arabidopsis (Arabidopsis thaliana) chloroplast glutamyl peptidase (CGEP) is a homo-oligomeric stromal Ser-type (S9D) peptidase with both exo- and endo-peptidase activity. Arabidopsis CGEP null mutant alleles (cgep) had no visible phenotype but showed strong genetic interactions with stromal CLP protease system mutants, resulting in reduced growth. Loss of CGEP upregulated the chloroplast protein chaperone machinery and 70S ribosomal proteins, but other parts of the proteostasis network were unaffected. Both comparative proteomics and mRNA-based coexpression analyses strongly suggested that the function of CGEP is at least partly involved in starch metabolism regulation. Recombinant CGEP degraded peptides and proteins smaller than ∼25 kD. CGEP specifically cleaved substrates on the C-terminal side of Glu irrespective of neighboring residues, as shown using peptide libraries incubated with recombinant CGEP and mass spectrometry. CGEP was shown to undergo autocatalytic C-terminal cleavage at E946, removing 15 residues, both in vitro and in vivo. A conserved motif (A[S/T]GGG[N/G]PE946) immediately upstream of E946 was identified in dicotyledons, but not monocotyledons. Structural modeling suggested that C-terminal processing increases the upper substrate size limit by improving catalytic cavity access. In vivo complementation with catalytically inactive CGEP-S781R or a CGEP variant with an unprocessed C-terminus in a cgep clpr2-1 background was used to demonstrate the physiological importance of both CGEP peptidase activity and its autocatalytic processing. CGEP homologs of photosynthetic and nonphotosynthetic bacteria lack the C-terminal prosequence, suggesting it is a recent functional adaptation in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/enzimología , Péptido Hidrolasas/metabolismo , Catálisis , Regulación de la Expresión Génica de las Plantas , Proteínas Ribosómicas/metabolismo , Especificidad por Sustrato
6.
Plant Cell ; 30(3): 543-562, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29453228

RESUMEN

N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Codón Iniciador/genética , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo
7.
Cancer Cell ; 31(3): 436-451, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292441

RESUMEN

Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.


Asunto(s)
Mutación , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/fisiología , Neoplasias de la Próstata/etiología , Receptores Androgénicos/fisiología , Proteínas Represoras/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Coactivador 3 de Receptor Nuclear/fisiología , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-ets/fisiología
8.
Mol Plant Pathol ; 17(1): 29-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25845484

RESUMEN

Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.


Asunto(s)
Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Transcripción Genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hojas de la Planta/microbiología , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Factores de Tiempo , Nicotiana/microbiología , Transcriptoma/genética
9.
Plant Cell ; 27(10): 2677-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26419670

RESUMEN

Clp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear. Here, we characterize a ClpS1-interacting protein in Arabidopsis thaliana, ClpF, which can interact with the Clp substrate glutamyl-tRNA reductase. ClpF and ClpS1 mutually stimulate their association with ClpC. ClpF, which is only found in photosynthetic eukaryotes, contains bacterial uvrB/C and YccV protein domains and a unique N-terminal domain. We propose a testable model in which ClpS1 and ClpF form a binary adaptor for selective substrate recognition and delivery to ClpC, reflecting an evolutionary adaptation of the Clp system to the plastid proteome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Portadoras/metabolismo , Endopeptidasa Clp/metabolismo , Modelos Moleculares , Proteoma , Proteínas Adaptadoras Transductoras de Señales/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Cloroplastos/enzimología , Endopeptidasa Clp/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multienzimáticos , Mutación , Filogenia , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Especificidad por Sustrato
10.
Plant Cell ; 27(5): 1477-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25921872

RESUMEN

Plastid ClpT1 and ClpT2 are plant-specific proteins that associate with the ClpPR protease. However, their physiological significance and structures are not understood. Arabidopsis thaliana loss-of-function single clpt1 and clpt2 mutants showed no visible phenotypes, whereas clpt1 clpt2 double mutants showed delayed development, reduced plant growth, and virescent, serrated leaves but were viable and produced seed. The clpt1 and clpt1 clpt2 mutants showed partial destabilization of the ClpPR complex, whereas clpt2 null mutants showed only marginal destabilization. Comparative proteomics of clpt1 clpt2 plants showed a proteostasis phenotype similar to viable mutants in ClpPR core subunits, indicating reduced Clp protease capacity. In vivo and in vitro assays showed that ClpT1 and ClpT2 can independently interact with the single ClpP ring and ClpPR core, but not with the single ClpR ring. We determined ClpT1 and ClpT2 structures (2.4- and 2.0-Å resolution) and detailed the similarities to the N-domains of bacterial ClpA/C chaperones. The ClpT structures suggested a conserved MYFF motif for interaction with the ClpPR core near the interface between the P- and R-rings. In vivo complementation showed that ClpT function and ClpPR core stabilization require the MYFF motif. Several models are presented that may explain how ClpT1,2 contribute to ClpPR protease activity.


Asunto(s)
Arabidopsis/enzimología , Endopeptidasa Clp/metabolismo , Estructura Molecular , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Endopeptidasa Clp/química , Endopeptidasa Clp/genética , Mutación , Fenotipo , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteómica , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo
11.
Plant Cell ; 27(1): 262-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25587003

RESUMEN

Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
12.
Plant J ; 78(3): 424-40, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24547885

RESUMEN

To help understand regulation of maize leaf blade development, including sink-source transitions and induction of C4 photosynthesis, we compared large-scale quantitative proteome and transcriptomes collected at specific stages along the developmental maize leaf blade gradient. Proteome data were based on label-free shotgun proteomics (spectral counting) and transcript data were based on RNA-seq using the same source materials, and had been published previously (Nat Genet, 42, 2010, 1060-1067; The Plant Cell, 22, 2010, 3509-3542). Transcript and protein abundance followed near normal distributions, in contrast with several studies with other organisms. Protein observability correlated with transcript abundance following a 'lazy step function' similar to that in bacteria and yeast. mRNA and protein abundance showed significant positive correlations (up to 0.8) for log-transformed length-weighted normalized spectral abundance factor (NSAF) and reads per kilobase of exon model per million mapped reads (RPKM) and non-weighted abundances (NadjSPC and COV) in dependence of function and development. Correlations were much weaker in the leaf 'sink-source' transition zone, i.e. the zone with massive investments in leaf chloroplast biogenesis and build-up of photosynthetic capacity. Clustering analyses of gene-specific protein-mRNA ratios revealed co-ordinated shifts in control points in gene expression along the leaf blade developmental gradient. The highest protein-mRNA ratio for each gene generally corresponded to leaf developmental stages in which the protein function was most important, with the exception of the 80S ribosome. Specific examples are discussed in the context of C4 photosynthesis, leaf development and sink-source transitions. This large-scale mRNA-protein correlation analysis in plants (maize) using label-free spectral counting for protein quantification and RNA-seq for mRNA abundance will provide a template for future mRNA-protein correlation studies.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Zea mays/fisiología , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Ribosómico/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Transcriptoma , Zea mays/genética
13.
Plant Cell ; 25(6): 2276-301, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23898032

RESUMEN

Whereas the plastid caseinolytic peptidase (Clp) P protease system is essential for plant development, substrates and substrate selection mechanisms are unknown. Bacterial ClpS is involved in N-degron substrate selection and delivery to the ClpAP protease. Through phylogenetic analysis, we show that all angiosperms contain ClpS1 and some species also contain ClpS1-like protein(s). In silico analysis suggests that ClpS1 is the functional homolog of bacterial ClpS. We show that Arabidopsis thaliana ClpS1 interacts with plastid ClpC1,2 chaperones. The Arabidopsis ClpS1 null mutant (clps1) lacks a visible phenotype, and no genetic interactions with ClpC/D chaperone or ClpPR core mutants were observed. However, clps1, but not clpc1-1, has increased sensitivity to the translational elongation inhibitor chloramphenicol suggesting a link between translational capacity and ClpS1. Moreover, ClpS1 was upregulated in clpc1-1, and quantitative proteomics of clps1, clpc1, and clps1 clpc1 showed specific molecular phenotypes attributed to loss of ClpC1 or ClpS1. In particular, clps1 showed alteration of the tetrapyrrole pathway. Affinity purification identified eight candidate ClpS1 substrates, including plastid DNA repair proteins and Glu tRNA reductase, which is a control point for tetrapyrrole synthesis. ClpS1 interaction with five substrates strictly depended on two conserved ClpS1 residues involved in N-degron recognition. ClpS1 function, substrates, and substrate recognition mechanisms are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Endopeptidasa Clp/metabolismo , Isoenzimas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Western Blotting , Cloroplastos/genética , Electroforesis en Gel de Poliacrilamida , Endopeptidasa Clp/clasificación , Endopeptidasa Clp/genética , Isoenzimas/clasificación , Isoenzimas/genética , Modelos Genéticos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Plantas Modificadas Genéticamente , Unión Proteica , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
14.
Plant Cell ; 25(5): 1818-39, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23673981

RESUMEN

Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the double mutant (k1 k3) displayed rapid chlorosis upon high light stress. Also, k1 k3 showed a slower, but irreversible, senescence-like phenotype during moderate light stress that was phenocopied by drought and nitrogen limitation, but not cold stress. This senescence-like phenotype involved degradation of the photosystem II core and upregulation of chlorophyll degradation. The senescence-like phenotype was independent of the EXECUTER pathway that mediates genetically controlled cell death from the chloroplast and correlated with increased levels of the singlet oxygen-derived carotenoid ß-cyclocitral, a retrograde plastid signal. Total PG volume increased during light stress in wild type and k1 k3 plants, but with different size distributions. Isolated PGs from k1 k3 showed a modified prenyl-lipid composition, suggesting reduced activity of PG-localized tocopherol cyclase (VTE1), and was consistent with loss of carotenoid cleavage dioxygenase 4. Plastid jasmonate biosynthesis enzymes were recruited to the k1 k3 PGs but not wild-type PGs, while pheophytinase, which is involved in chlorophyll degradation, was induced in k1 k3 and not wild-type plants and was localized to PGs. Thus, the ABC1K1/3 complex contributes to PG function in prenyl-lipid metabolism, stress response, and thylakoid remodeling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Vías Biosintéticas/efectos de la radiación , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Electroforesis en Gel de Poliacrilamida , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Luz , Espectrometría de Masas/métodos , Microscopía Electrónica , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Estrés Oxidativo/efectos de la radiación , Pigmentación/genética , Pigmentación/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tilacoides/genética , Tilacoides/metabolismo , Tilacoides/ultraestructura
15.
Plant Physiol ; 162(1): 157-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23548781

RESUMEN

The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Cloroplastos/fisiología , Endopeptidasa Clp/genética , Regulación de la Expresión Génica de las Plantas , Proteómica , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo , Endopeptidasa Clp/metabolismo , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Homeostasis , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Fenotipo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Eliminación de Secuencia , Regulación hacia Arriba
16.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23469345

RESUMEN

Reported herein is the complete genome sequence of Brachyspira pilosicoli strain P43/6/78T, isolated from a pig with clinical disease. This sequence will aid in the study of genome-wide comparison among Brachyspira species.

17.
Plant Cell ; 24(8): 3219-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22911570

RESUMEN

The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Brotes de la Planta/metabolismo , Zea mays/genética , Biomarcadores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Captura por Microdisección con Láser , Meristema/genética , Meristema/crecimiento & desarrollo , Microdisección , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , ARN de Planta/análisis , ARN de Planta/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transcripción Genética , Transcriptoma , Zea mays/embriología , Zea mays/metabolismo
18.
Am J Bot ; 99(2): 267-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22301897

RESUMEN

Even with recent reductions in sequencing costs, most plants lack the genomic resources required for successful short-read transcriptome analyses as performed routinely in model species. Several approaches for the analysis of short-read transcriptome data are reviewed for nonmodel species for which the genome of a close relative is used as the reference genome. Two approaches using a data set from Phytophthora-challenged Rubus idaeus (red raspberry) are compared. Over 70000000 86-nt Illumina reads derived from R. idaeus roots were aligned to the Fragaria vesca genome using publicly available informatics tools (Bowtie/TopHat and Cufflinks). Alignment identified 16956 putatively expressed genes. De novo assembly was performed with the same data set and a publicly available transcriptome assembler (Trinity). A BLAST search with a maximum e-value threshold of 1.0 × 10(-3) revealed that over 36000 transcripts had matches to plants and over 500 to Phytophthora. Gene expression estimates from alignment to F. vesca and de novo assembly were compared for raspberry (Pearson's correlation = 0.730). Together, alignment to the genome of a close relative and de novo assembly constitute a powerful method of transcriptome analysis in nonmodel organisms. Alignment to the genome of a close relative provides a framework for differential expression testing if alignments are made to the predefined gene-space of a close relative and de novo assembly provides a more robust method of identifying unique sequences and sequences from other organisms in a system. These methods are considered experimental in nonmodel systems, but can be used to generate resources and specific testable hypotheses.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genoma de Planta , Rosaceae/genética , Programas Informáticos , Bases de Datos Genéticas , Resistencia a la Enfermedad/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Phytophthora/genética , Phytophthora/inmunología , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , ARN de Planta/genética , Rosaceae/inmunología , Rosaceae/microbiología , Alineación de Secuencia/métodos
19.
Plant Physiol ; 158(1): 156-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22065420

RESUMEN

Plastids contain multiple copies of the plastid chromosome, folded together with proteins and RNA into nucleoids. The degree to which components of the plastid gene expression and protein biogenesis machineries are nucleoid associated, and the factors involved in plastid DNA organization, repair, and replication, are poorly understood. To provide a conceptual framework for nucleoid function, we characterized the proteomes of highly enriched nucleoid fractions of proplastids and mature chloroplasts isolated from the maize (Zea mays) leaf base and tip, respectively, using mass spectrometry. Quantitative comparisons with proteomes of unfractionated proplastids and chloroplasts facilitated the determination of nucleoid-enriched proteins. This nucleoid-enriched proteome included proteins involved in DNA replication, organization, and repair as well as transcription, mRNA processing, splicing, and editing. Many proteins of unknown function, including pentatricopeptide repeat (PPR), tetratricopeptide repeat (TPR), DnaJ, and mitochondrial transcription factor (mTERF) domain proteins, were identified. Strikingly, 70S ribosome and ribosome assembly factors were strongly overrepresented in nucleoid fractions, but protein chaperones were not. Our analysis strongly suggests that mRNA processing, splicing, and editing, as well as ribosome assembly, take place in association with the nucleoid, suggesting that these processes occur cotranscriptionally. The plastid developmental state did not dramatically change the nucleoid-enriched proteome but did quantitatively shift the predominating function from RNA metabolism in undeveloped plastids to translation and homeostasis in chloroplasts. This study extends the known maize plastid proteome by hundreds of proteins, including more than 40 PPR and mTERF domain proteins, and provides a resource for targeted studies on plastid gene expression. Details of protein identification and annotation are provided in the Plant Proteome Database.


Asunto(s)
Cloroplastos/metabolismo , Orgánulos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plastidios/genética , Proteoma/metabolismo , Zea mays/citología , Reparación del ADN/fisiología , Replicación del ADN , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Orgánulos/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plastidios/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteoma/genética , Edición de ARN , Empalme del ARN , Ribonucleasas/química , Ribosomas/genética , Ribosomas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
20.
Plant Cell ; 23(11): 3893-910, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22045915

RESUMEN

Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.


Asunto(s)
Frutas/citología , Frutas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Pared Celular/metabolismo , Análisis por Conglomerados , Sistema Enzimático del Citocromo P-450/genética , Metabolismo Energético/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser/métodos , Solanum lycopersicum/crecimiento & desarrollo , Especificidad de Órganos , Epidermis de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...