Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3074-3081, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412556

RESUMEN

Coupling effects of localized surface plasmon resonance (LSPR) represent an efficient means to tune the plasmonic modes and to enhance the near-field. While LSPR coupling in metal nanoparticles has been extensively explored, limited attention has been given to heavily doped semiconductor nanocrystals. Here, we investigate the LSPR coupling behavior of Cs-doped tungsten oxide (CsxWO3-δ) nanocrystal platelets as they undergo an oriented assembly into parallel stacks. The oriented assembly was achieved by lowering the dispersion stability of the colloidal nanoplatelets, of which the basal surface was selectively ligand-functionalized. This assembly induces simultaneous blue-shifts and red-shifts of dual-mode LSPR peaks without compromising the intensity and quality factor. This stands in contrast to the significant damping, broadening, and overall red-shift of the LSPR observed in random assemblies. Computational simulations successfully replicate the experimental observations, affirming the potential of this coupling phenomenon of near-infrared dual-mode LSPR in diverse applications including solar energy, bio-optics, imaging, and telecommunications.

2.
Langmuir ; 40(5): 2601-2615, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38279929

RESUMEN

Optical metasurfaces are two-dimensional assemblies of nanoscale optical resonators and could constitute the next generation of ultrathin optical components. The development of methods to manufacture these nanostructures on a large scale is still a challenge, while most performance demonstrations were obtained with lithographically fabricated metasurfaces that are restricted to small scales. Self-assembly fabrication routes are promising alternatives and have been used to produce original nanoresonators. Reports of self-assembled metasurface fabrication, however, are still scarce. Here, we show that an emulsion-based formulation approach can be used both for the fabrication of complex colloidal resonators, presenting a strong interaction with light, in particular due to simultaneous magnetic and electric modes of resonance, and for their deposition in homogeneous films. This fabrication technique involves emulsification of an aqueous suspension of silver nanoparticles in an oil phase, followed by controlled drying of the emulsion, and produces silver colloidal clusters. We show that the drying process can be controlled in a liquid emulsion, producing a metafluid, as well as in a sedimented emulsion, producing a metasurface. The structural control of the synthesized colloidal clusters is demonstrated with electron microscopy and X-ray scattering techniques. Using a polarization-resolved multiangle light scattering setup in the visible wavelength range, we conduct a comprehensive angular and spectroscopic study of the optical resonant scattering of the nanoresonators in a metafluid and show that they present strong optical magnetic resonances and directional forward-scattering patterns, with scattering efficiencies of up to 4. The metasurfaces consist of homogeneous films, of variable surface density, of colloidal clusters that have the same extinction properties on the surface and in the fluid. This experimental approach allows for large-scale production of metasurfaces.

3.
J Colloid Interface Sci ; 609: 375-383, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34902674

RESUMEN

Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (∼95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve near-perfect absorption at ≈ 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelength-thin metasurfaces.

4.
Nano Lett ; 21(5): 2046-2052, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33599504

RESUMEN

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition. Using a multistep colloidal engineering approach, we synthesize highly symmetric plasmonic nanoclusters with a controlled silver satellite size and show that they exhibit a strong forward scattering that may be used in various applications such as metasurfaces or perfect absorbers.

5.
Nanoscale ; 12(47): 24177-24187, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283823

RESUMEN

Existing nanocolloidal optical resonators exhibiting strong magnetic resonances often suffer from multi-step low yield synthesis methods as well as a limited tunability, particularly in terms of spectral superposition of electric and magnetic resonances, which is the cornerstone for achieving Huygens scatterers. To overcome these drawbacks, we have synthesized clusters of gold nanoparticles using an emulsion-based formulation approach. This fabrication technique involved emulsification of an aqueous suspension of gold nanoparticles in an oil phase, followed by controlled ripening of the emulsion. The structural control of the as synthesized clusters, of mean radius 120 nm and produced in large numbers, is demonstrated with microscopy and X-ray scattering techniques. Using a polarization-resolved multi-angle light scattering setup, we conduct a comprehensive angular and spectroscopic determination of their optical resonant scattering in the visible wavelength range. We thus report on the clear experimental evidence of strong optical magnetic resonances and directional forward scattering patterns. The clusters behave as strong Huygens sources. Our findings crucially show that the electric and magnetic resonances as well as the scattering patterns can be tuned by adjusting the inner cluster structure, modifying a simple parameter of the fabrication method. This experimental approach allows for the large scale production of nanoresonators with potential uses for Huygens metasurfaces.

6.
Langmuir ; 36(46): 13872-13880, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33175555

RESUMEN

Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.

7.
RSC Adv ; 10(67): 41088-41097, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519210

RESUMEN

In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.

8.
Nanoscale Adv ; 1(2): 849-857, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36132249

RESUMEN

Materials with a high and tunable refractive index are attractive for nanophotonic applications. In this contribution, we propose a straightforward fabrication technique of high-refractive index surfaces based on self-assembled nanostructured block copolymer thin films. The selective and customizable metal incorporation within out-of-plane polymer lamellae produces azimuthally isotropic metallic nanostructures of defined geometries, which were analysed using microscopy and small-angle X-ray scattering techniques. Variable-angle spectroscopic ellipsometry was used to relate the geometrical parameters of the metallic features and the resulting refractive index of the patterned surfaces. In particular, nanostructured gold patterns with a high degree of homogeneity and a gold content as low as 16 vol% reach a refractive index value of more than 3 in the visible domain. Our study thus demonstrates a new route for the preparation of high refractive index surfaces with a low metal content for optical applications.

9.
Macromol Rapid Commun ; 39(7): e1700754, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29337412

RESUMEN

Nanotemplates derived from the self-assembly of AB-type block copolymers provide an elegant route to achieve well-defined metallic dot arrays, even if the variety of pattern symmetries is restricted due to the limited number of structures offered by microphase separated diblock copolymers. A strategy that relies on the use of complex network structures accessible through the self-assembly of linear ABC-type terpolymers is presented for the formation of metallic nanodots arrays with "outside-the-box" symmetries. Patterned templates formed by the cubic Q214 and orthorhombic O70 network structures are used as excellent platforms to build well-ordered gold nanodot arrays with unique p3m1 and p2 symmetries, respectively. A simple yet efficient blending strategy is used to tune the critical dimensions of the p3m1 pattern while laterally ordered gold nanodot arrays are also demonstrated through a directed self-assembly approach. Such highly ordered gold nanodots with tunable particle dimensions and array periods, enabling the control of their plasmonic responses, are attractive probes for biological imaging.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polímeros/química
10.
ACS Nano ; 11(4): 3806-3818, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28358490

RESUMEN

Plasmonic nanoparticles, particularly gold nanoparticles (GNPs) hold a great potential as structural and functional building blocks for three-dimensional (3D) nanoarchitectures with specific optical applications. However, a rational control of their assembly into nanoscale superstructures with defined positioning and overall arrangement still remains challenging. Herein, we propose a solution to this challenge by using as building blocks: (1) nanometric silica helices with tunable handedness and sizes as a matrix and (2) GNPs with diameter varying from 4 to 10 nm to prepare a collection of helical GNPs superstructures (called Goldhelices hereafter). These nanomaterials exhibit well-defined arrangement of GNPs following the helicity of the silica template. Strong chiroptical activity is evidenced by circular dichroism (CD) spectroscopy at the wavelength of the surface plasmon resonance (SPR) of the GNPs with a anisotropy factor (g-factor) of the order of 1 × 10-4, i.e., 10-fold larger than what is typically reported in the literature. Such CD signals were simulated using a coupled dipole method which fit very well the experimental data. The measured signals are 1-2 orders of magnitude lower than the simulated signals, which is explained by the disordered GNPs grafting, the polydispersity of the GNPs, and the dimension of the nanohelices. These Goldhelices based on inorganic templates are much more robust than previously reported organic-based chiroptical nanostructures, making them good candidates for complex hierarchical organization, providing a promising approach for light management and benefits in applications such as circular polarizers, chiral metamaterials, or chiral sensing in the visible range.

11.
J Colloid Interface Sci ; 431: 97-104, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24992300

RESUMEN

In this study, our aim was to control the assembly of plasmonic nanoparticles by using the electrostatic assembly of oppositely charged colloidal species. Gold nanoparticles (Au NPs) were modified with a carboxyl-terminated polymeric ligand, O-(2-carboxyethyl)-O'-(2-mercaptoethyl) heptaethylene glycol (SH-PEG7-COOH), so that they are negatively charged on the pH range 5-10 and they stand elevated ionic strength (up to 1M NaCl) without loss of colloidal stability. Block copolymers poly[(ethylene glycol) methyl ether-block-(N,N-dimethylamino-2-ethyl methacrylate)] (mPEG-PDMAEMA), with a neutral mPEG block and a pH-sensitive positively charged PDMAEMA block were synthesized by atom transfer radical polymerization (ATRP). The formation of complexes, driven by the electrostatic attraction between opposite charges and by the release of the condensed counter ions, was investigated using dynamic light scattering and spectrophotometry. The relative quantities of polymer chains and nanoparticles in the suspension were shown to affect the size of the formed complexes. In this report, it is also shown that the complex formation is reversible. Stable complexes of typical size 400 nm were formed, which could be used as building blocks for new optical materials.


Asunto(s)
Nanopartículas/química , Polietilenglicoles/química , Polietilenglicoles/síntesis química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntesis química , Tamaño de la Partícula , Electricidad Estática
12.
ACS Nano ; 7(8): 6465-77, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23902425

RESUMEN

We use evaporation within a microfluidic device to extract the solvent of a (possibly very dilute) dispersion of nanoparticles and concentrate the dispersion until a solid made of densely packed nanoparticles grows and totally invades the microfluidic geometry. The growth process can be rationalized as an interplay between evaporation-induced flow and kinetic and thermodynamic coefficients which are system-dependent; this yields limitations to the growth process illustrated here on two main cases: evaporation- and transport-limited growth. Importantly, we also quantify how colloidal stability may hinder the growth and show that care must be taken as to the composition of the initial dispersion, especially regarding traces of ionic species that can destabilize the suspension upon concentration. We define a stability chart, which, when fulfilled, permits us to grow and shape-up solids, including superlattices and extended and thick arrays of nanoparticles made of unary and binary dispersions, composites, and heterojunctions between distinct types of nanoparticles. In all cases, the geometry of the final solid is imparted by that of the microfluidic device.

13.
Langmuir ; 28(1): 272-82, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22118375

RESUMEN

We study the phase behavior in water of a mixture of natural long chain fatty acids (FAM) in association with ethylenediamine (EDA) and report a rich polymorphism depending on the composition. At a fixed EDA/FAM molar ratio, we observe upon dilution a succession of organized phases going from a lamellar phase to a hexagonal phase and, finally, to cylindrical micelles. The phase structure is established using polarizing microscopy, SAXS, and SANS. Interestingly, in the lamellar phase domain, we observe the presence of defects upon dilution, which SAXS shows to correspond to intrabilayer correlations. NMR and FF-TEM techniques suggest that these defects are related to an increase in the spontaneous curvature of the molecule monolayers in the lamellae. ATR-FTIR spectroscopy was also used to investigate the degree of ionization within these assemblies. The successive morphological transitions are discussed with regards to possible molecular mechanisms, in which the interaction between the acid surfactant and the amine counterion plays the leading role.


Asunto(s)
Ácidos Grasos/química , Cristalización , Técnica de Fractura por Congelación , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Dispersión de Radiación
14.
Langmuir ; 27(5): 1990-5, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21188991

RESUMEN

We report on the structures exhibited by two different diblock poly(styrene)-b-poly(acrylic acid) (PS-b-PAA) copolymers in water, a selective solvent. Using a combination of X-ray scattering and freeze fracture-transmission electron microscopy (FF-TEM), we show that these structures can be widely swollen while retaining their initial morphology and a high degree of long-range order. The analysis of the FF-TEM pictures also evidences the presence of water crystallites of regular size and shape within the confined water domains. We relate the growth of these crystallites to the high local ionic strength of the water swelling the PAA brushes. Moreover, the confinement of the crystallites growth shows that the swollen phases have a very robust structure, potentially useful for confining colloidal particles.

15.
J Phys Chem B ; 112(27): 7996-8009, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18598008

RESUMEN

We consider a symmetrical poly(styrene- stat-(acrylic acid))- block-poly(acrylic acid), i.e., PSAA- b-PAA, diblock copolymer, with a molar fraction phi AA = 0.42 of acrylic acid, in the more hydrophobic PSAA statistical first block. We investigate its structural behavior at constant concentration in water using small-angle neutron scattering (SANS) by varying (i) the ionization of its acrylic acid motives via the pH by adding NaOH and (ii) the ionic strength of the solution by increasing the NaCl salt concentration c S. We present the resulting morphological phase diagram {pH, c S}, in which we identified two different lamellar phases presenting a smectic long-range order at small-to-intermediate ionizations and a spherical phase with a liquid-like short-range order at larger ionization. In the low-ionization regime, the first lamellar phase comprises a water-free PSAA lamellar core surrounded by a dense poly(acrylic acid) brush swollen with water. Its mostly hydrophobic core still being glassy, this phase is unable to reorganize and is frozen in. A detailed analysis of the SANS data shows the osmotic nature of the polyelectrolyte brush, in which the Na+ counterions are confined so that local electroneutrality is satisfied. Above the pH at which the PSAA statistical block starts ionizing, the PSAA lamellar core melts. The second lamellar phase identified then comprises a PSAA core thinner than that of the frozen-in previous phase, implying a significant increase of the core/water interface and a decrease of the brush surface density. The transition from the first lamellar phase to the second one can be quantitatively shown to result from the balance between the two contributions: (i) the extra interfacial cost between the thinner core and water and (ii) the associated gain in entropy of mixing for the counterions confined inside the brush. At even higher ionization, the diblocks finally form spherical objects with a very small, pH-dependent aggregation number and reach an apparent onset of self-association. When the highest ionization investigated is reached, the cores of these final spherical core-shell objects are found to contain a significant amount of water. We thereby demonstrate that at constant concentration, pH, and ionic strength both trigger a transition from frozen to molten hydrophobic phases as well as unexpected morphological transitions.

16.
Chem Commun (Camb) ; (18): 1953-5, 2006 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-16767247

RESUMEN

Branched water-soluble copolymers were obtained by direct radical crosslinking copolymerisation of acrylic acid or acrylamide and N,N'-methylenebisacrylamide at high solid content in the presence of an O-ethylxanthate as a reversible chain transfer agent.

17.
Langmuir ; 21(5): 1712-8, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15723464

RESUMEN

We investigate by small-angle scattering the structural behavior in water of a family of asymmetric poly(styrene-stat-(acrylic acid))-block-poly(acrylic acid), i.e., P(S-stat-AA)-b-PAA, diblock copolymers. These diblocks are of constant block ratio and increasing molar fraction, phi(AA), ranging from 0 to 1, of acrylic acid in the first P(S-stat-AA) statistical block. We identify three types of structural behavior in water: (i) for phi(AA) /= 0.50, the diblocks dispersions in water are at equilibrium. For high phi(AA), the diblocks are soluble in water, demonstrating that a transition from colloid-like objects to soluble macromolecules is achieved. Close to the transition, (phi(AA) approximately 0.50), the diblocks form objects interpreted as comprising a water-swollen core formed by the P(S-stat-AA) block, surrounded by a swollen brush composed of the majority PAA block, above a apparent critical micelle concentration. However, these diblocks do not behave as macrosurfactants, and their self-association behavior is rather interpreted as a microphase separation which can arise from the incompatibility between two polymer blocks P(S-stat-AA) and PAA placed in a common solvent water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...