Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ind Microbiol Biotechnol ; 47(11): 947-964, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32895764

RESUMEN

The biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing more advanced monitoring and control strategies.


Asunto(s)
Industrias , Tecnología , Automatización
2.
Artículo en Inglés | MEDLINE | ID: mdl-32509744

RESUMEN

Monitoring and control of fermentation processes remain a crucial challenge for both laboratory and industrial-scale experiments. Reliable identification and quantification of the key process parameters in on-line mode allow operation of the fermentation at optimal reactor efficiency, maximizing productivity while minimizing waste. However, state-of-the-art fermentation on-line monitoring is still limited to a number of standard measurements such as pH, temperature and dissolved oxygen, as well as off-gas analysis as an advanced possibility. Despite the availability of commercial biosensor-based platforms that have been established for continuous monitoring of glucose and various biological variables within healthcare, on-line glucose quantification in fermentation processes has not been implemented yet to a large degree. For the first time, this work presents a complete study of a commercial flow-through-cell with integrated electrochemical glucose biosensors (1st generation) applied in different media, and importantly, at- and on-line during a yeast fed-batch fermentation process. Remarkably, the glucose biosensor-based platform combined with the developed methodology was able to detect glucose concentrations up to 150 mM in the complex fermentation broth, on both cell-free and cell-containing samples, when not compromised by oxygen limitations. This is four to six-fold higher than previously described in the literature presenting the application of biosensors predominately toward cell-free fermentation samples. The automated biosensor platform allowed reliable glucose quantification in a significantly less resource and time (<5 min) consuming manner compared to conventional HPLC analysis with a refractive index (RI) detector performed as reference measurement. Moreover, the presented biosensor platform demonstrated outstanding mechanical stability in direct contact with the fermentation medium and accurate glucose quantification in the presence of various electroactive species. Coupled with the developed methodology it can be readily considered as a simple, robust, accurate and inexpensive tool for real-time glucose monitoring in fermentation processes.

3.
Appl Microbiol Biotechnol ; 104(12): 5315-5335, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32328682

RESUMEN

Fermentation processes are still compromised by a lack of monitoring strategies providing integrated process data online, ensuring process understanding, control, and thus, optimal reactor efficiency. The crucial demand for online monitoring strategies, not only encouraged by the PAT initiative but also motivated by modern paradigms such as circular economy and sustainability, has driven research and industry to provide "next-generation process technology": in other words, technology tailored toward industrial needs. Mid-infrared (MIR) spectroscopy as such is superior to near-infrared (NIR) spectroscopy since it provides significantly enhanced selectivity. However, due to high costs and a lack of instrumental robustness, MIR spectroscopy is outcompeted by NIR when it comes to industrial application. The lack of chemometric expertise, model understanding, and practical guidance might add to the slow acceptance of industrial MIR application. This work demonstrates the use of novel MIR, so-called non-linear infrared (NLIR) technology and the importance of model understanding, exemplarily investigated on a lab-scale yeast fermentation process. The six analytes glucose, ethanol, glycerol, acetate, ammonium, and phosphate were modeled by partial least squares (PLS) based on spectral data, demonstrating the potential of the novel technology facilitating online data acquisition and the necessity of investigating indirect predictions. KEY POINTS: • NLIR spectra were acquired online during a yeast fermentation process • PLS models were constructed for six components based on uncorrelated samples • Glucose, ethanol, ammonium, and phosphates were modeled with errors of less than 15% • Acetate and glycerol were shown to rely on indirect predictions.


Asunto(s)
Fermentación , Microbiología Industrial/métodos , Dinámicas no Lineales , Saccharomyces cerevisiae/metabolismo , Espectroscopía Infrarroja Corta , Compuestos de Amonio/metabolismo , Etanol/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/efectos de la radiación
4.
N Biotechnol ; 56: 54-62, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31770609

RESUMEN

Real-time monitoring of bioprocesses plays a key-role in modern industries, providing new information on full-scale production, thus enabling control of the process and allowing it to run at optimal conditions while minimizing waste. Monitoring of phosphates and ammonium in fermentation processes has a twofold interest: they are important nutrients for living organisms while at the same time constituting environmental nutrient pollutants, for which unnecessary use and disposal must be avoided. In this report, the possibility of simultaneous analysis of phosphates and ammonium in fermentations was verified using spectroscopy-based methods combined with chemometrics to construct calibration models. To achieve this, the models were based on synthetic samples mimicking real fermentation media, providing a dataset where the analytes were completely uncorrelated. Different at-line techniques (mid- and near- infrared spectroscopy, MIR and NIR) were evaluated for their ability to monitor quickly both analytes, in a wide range of concentrations (10-100 mM), in three media of different complexities. Partial Least Squares (PLS) models on MIR spectroscopy gave very good results, with prediction errors lower than 5 % for both analytes in all datasets. In contrast, the results for PLS models on NIR spectroscopy were inferior (prediction errors between 3 and 26 %) for both analytes, as, in the case of phosphate, it could be demonstrated that the model was based on based on indirect predictions.


Asunto(s)
Compuestos de Amonio/análisis , Fermentación , Fosfatos/análisis , Compuestos de Amonio/metabolismo , Calibración , Estudios de Factibilidad , Análisis de los Mínimos Cuadrados , Fosfatos/metabolismo , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...