Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543281

RESUMEN

We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites. The lower limit of quantification resulted in 1 ng/mL. The curve range of 1-500 ng/mL and 50-2000 ng/mL, for plasma and tumor homogenate, respectively, was appropriate for the analysis, as demonstrated by the accuracy of between 96.8% and 102.4% for plasma and 96.6 to 102.3% for the tumor. The interdays precision and accuracy determined on quality controls at three different levels were in the ranges of 6.9 to 7.5% and 99.3 to 101.0%, and 0.96 to 1.91% and 102.3 to 105.8% for plasma and tumor, respectively. With the application of the novel assay in explorative pharmacokinetic studies, following acute and chronic oral administration of the nanoformulation, fenretinide was detected in plasma and tumor tissue at a concentration higher than the IC50 value necessary for in vitro inhibitory activity (i.e., 1-5 µM) in different cancer cells lines. We were also able to detect the presence in plasma and tumor of active and inactive metabolites of fenretinide.

3.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37583386

RESUMEN

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

4.
Front Immunol ; 13: 867013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757746

RESUMEN

Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Edición Génica/métodos , Inmunoterapia Adoptiva/métodos , ARN Mensajero , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
5.
Int J Biol Sci ; 16(8): 1363-1375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210725

RESUMEN

Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.


Asunto(s)
Antineoplásicos/farmacocinética , Indazoles/farmacocinética , Espectrometría de Masas/métodos , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/farmacocinética , Piperazinas/farmacocinética , Piperidinas/farmacocinética , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Iones , Límite de Detección , Ratones , Ratones Desnudos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reproducibilidad de los Resultados
7.
Clin Cancer Res ; 25(24): 7565-7575, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31481505

RESUMEN

PURPOSE: This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin. EXPERIMENTAL DESIGN: The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.v. administrations, respectively. Molecular studies were performed by using microarrays approach, real-time PCR, and Western blotting. RESULTS: We found that the resistance of MLS against trabectedin is associated with the lack of activation of adipogenesis. The PPARγ agonist pioglitazone reactivated adipogenesis, assessed by histologic and gene pathway analyses. Pioglitazone was well tolerated and did not increase the toxicity of trabectedin. The ability of pioglitazone to reactivate adipocytic differentiation was observed by morphologic examination, and it is consistent with the increased expression of genes such as ADIPOQ implicated in the adipogenesis process. The determination of adiponectin by Western blotting constitutes a good and reliable biomarker related to MLS adipocytic differentiation. CONCLUSIONS: The finding that the combination of pioglitazone and trabectedin induces terminal adipocytic differentiation of some MLSs with the complete pathologic response and cure of tumor-bearing mice provides a strong rationale to test the combination of trabectedin and pioglitazone in patients with MLS.


Asunto(s)
Adipocitos/patología , Diferenciación Celular , Resistencia a Antineoplásicos , Liposarcoma Mixoide/tratamiento farmacológico , PPAR gamma/agonistas , Pioglitazona/farmacología , Trabectedina/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino , Humanos , Hipoglucemiantes/farmacología , Liposarcoma Mixoide/metabolismo , Liposarcoma Mixoide/patología , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Macromol Biosci ; 18(10): e1800164, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30047229

RESUMEN

The advent of nanotechnology in medicine has allowed to eliminate the toxic excipients that are often necessary to formulate lipophilic drugs in clinics. An example is paclitaxel, one of the most important chemotherapeutic drugs developed so far, where the Cremophor EL has been eliminated in the Genexol and Abraxane formulations. However, the complex procedures to synthesize these formulations hamper their cost-effective use and, in turn, their distribution among the patient population. For this reason, a simplified method to formulate this drug directly at the bed of the patient has been adopted. It requires only the use of a syringe and it starts from a native dry amphiphilic biodegradable and biocompatible block-copolymer obtained via the combination of the reversible addition-fragmentation chain transfer polymerization and ring-opening polymerization. In this way, a novel paclitaxel formulation with the same drug pharmacological properties, but without the use of the Cremophor EL, can be produced. In addition, as long as these nanoparticles are engineered to act as solubility enhancers, a lower burden for its approval from the pharmaceutical regulatory agencies is also expected.


Asunto(s)
Portadores de Fármacos , Excipientes , Nanopartículas/química , Paclitaxel , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Paclitaxel/química , Paclitaxel/farmacocinética , Solubilidad
9.
J Control Release ; 276: 140-149, 2018 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-29524443

RESUMEN

The improvement of the pharmacological profile of lipophilic drug formulations is one of the main successes achieved using nanoparticles (NPs) in medicine. However, the complex synthesis procedure and numerous post-processing steps hamper the cost-effective use of these formulations. In this work, an approach which requires only a syringe to produce self-assembling biodegradable and biocompatible poly(caprolactone)-based NPs is developed. The effective synthesis of monodisperse NPs has been made possible by the optimization of the block-copolymer synthesized via a combination of ring opening polymerization and reversible addition-fragmentation chain transfer polymerization. These NPs can be used to formulate lipophilic drugs that are barely soluble in water, such as trabectedin, a potent anticancer therapeutic. Its biodistribution and antitumor activity have been compared with the commercially available formulation Yondelis®. The results indicate that this trabectedin NP formulation performs with the same antitumor activity as Yondelis®, but does not have the drawback of severe local vascular toxicity in the injection site.


Asunto(s)
Antineoplásicos Alquilantes , Nanopartículas , Trabectedina , Animales , Antineoplásicos Alquilantes/administración & dosificación , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacocinética , Femenino , Liposarcoma/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratones Desnudos , Nanopartículas/administración & dosificación , Nanopartículas/química , Polímeros/administración & dosificación , Polímeros/química , Piel/efectos de los fármacos , Piel/patología , Solubilidad , Distribución Tisular , Trabectedina/administración & dosificación , Trabectedina/química , Trabectedina/farmacocinética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...