Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884694

RESUMEN

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Transporte Biológico/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Diferenciación Celular , Linfocitos T CD8-positivos/metabolismo
2.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35472029

RESUMEN

Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.


Asunto(s)
Hidrógeno , Protones , Concentración de Iones de Hidrógeno , Recuento de Linfocitos , Transducción de Señal
3.
J Neurochem ; 160(2): 185-202, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478582

RESUMEN

Co-ordinating the dynamic behaviour of actin filaments (F-actin) and microtubules in filopodia is an important underlying process in neuritogenesis, but the molecular pathways involved are ill-defined. The drebrin/end-binding protein 3 (EB3) pathway is a candidate pathway for linking F-actin to microtubules in filopodia. Drebrin binds F-actin and, simultaneously, the microtubule-binding protein EB3 when bound to microtubule plus-ends. We assessed the effect on neuritogenesis of gain- or loss-of-function of proteins in the drebrin/EB3 pathway in rat embryonic cortical neurons in culture. Loss-of-function of drebrin by gene editing or pharmacological inhibition of drebrin binding to F-actin reduced the number of dynamic microtubules in the cell periphery and simultaneously delayed the initiation of neuritogenesis, whereas over-expression of drebrin induced supernumerary neurites. Similarly, loss of EB3 inhibited neuritogenesis, whereas loss of end-binding protein 1 (EB1), a related protein that does not bind to drebrin, did not affect neuritogenesis. Over-expression of EB3, but not EB1, induced supernumerary neurites. We discovered that EB3 is more proximally located at dynamic microtubule plus-ends than EB1 in growth cone filopodia allowing for continuous microtubule elongation as the drebrin/EB3 pathway zippers microtubules to F-actin in filopodia. Finally, we showed that preventing the entry of dynamic microtubules into filopodia using a pharmacological inhibitor of microtubule dynamics is associated with a loss of EB3, but not EB1, from microtubule plus-ends and a concurrent attenuation of neuritogenesis. Collectively, these findings support the idea that neuritogenesis depends on microtubule/F-actin zippering in filopodia orchestrated by the drebrin/EB3 pathway.


Asunto(s)
Corteza Cerebral/embriología , Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Corteza Cerebral/metabolismo , Embrión de Mamíferos , Ratas , Transducción de Señal/fisiología
4.
Mol Aspects Med ; 77: 100888, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32814624

RESUMEN

In order to fulfill their effector and patrolling functions, lymphocytes traffic through the body and need to adapt to different tissue microenvironments. First, mature lymphocytes egress the bone marrow and the thymus into the vascular system. Circulating lymphocytes can exit the vasculature and penetrate into the tissues, either for patrolling in search for pathogens or to eliminate infection and activate the adaptive immune response. The cytoskeletal reorganization necessary to sustain migration require high levels of energy thus presenting a substantial bioenergetic challenge to migrating cells. The metabolic regulation of lymphocyte motility and trafficking has only recently begun to be investigated. In this review we will summarize current knowledge of the crosstalk between cell metabolism and the cytoskeleton in T lymphocytes, and discuss the concept that lymphocyte metabolism may reprogram in response to migratory stimuli and adapt to the different environmental cues received during recirculation in tissues.


Asunto(s)
Linfocitos T , Inmunidad Adaptativa , Movimiento Celular , Humanos , Linfocitos
5.
Nat Commun ; 11(1): 3595, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681081

RESUMEN

Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant ß-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response.


Asunto(s)
Células Endoteliales/metabolismo , Microvasos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Animales , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
6.
Dis Model Mech ; 11(1)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29361513

RESUMEN

We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the ß-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D ). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Asma/enzimología , Asma/prevención & control , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Asma/complicaciones , Asma/patología , Secuencia de Bases , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Etilnitrosourea , Genotipo , Homocigoto , Humanos , Hipersensibilidad/complicaciones , Hipersensibilidad/patología , Inflamación/complicaciones , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/parasitología , Pulmón/patología , Ratones , Ratones Mutantes , Mutación/genética , Pyroglyphidae , Reproducibilidad de los Resultados
7.
Dis Model Mech ; 10(4): 409-423, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28237967

RESUMEN

Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema.


Asunto(s)
Envejecimiento/patología , Polaridad Celular , Homeostasis , Pulmón/patología , Proteínas del Tejido Nervioso/genética , Cicatrización de Heridas , Células A549 , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular , Regulación hacia Abajo/genética , Elastina/metabolismo , Embrión de Mamíferos/patología , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Pulmón/embriología , Pulmón/fisiopatología , Macrófagos/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Fenotipo , Polimorfismo Genético , Enfermedad Pulmonar Obstructiva Crónica/genética , Fumar/efectos adversos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Histol Histopathol ; 32(4): 325-337, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27624638

RESUMEN

Our understanding of lung biology can be greatly enhanced by studying embryonic and postnatal lung development, and the perturbations which occur during disease. Imaging techniques provide a unique insight into these processes. A wide variety of imaging techniques have been used to study the lungs at various stages of development and disease, ranging from histological stains to more novel techniques such as single plane illumination microscopy (SPIM), intravital microscopy (IVM), and micro-computed tomography (micro-CT). Each of these tools can be used to elicit different information about the lungs and each has its own unique advantages and disadvantages for pulmonary research. In this review we assess some of the most commonly-used and novel imaging techniques available for lung research today.


Asunto(s)
Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/tendencias , Pulmón/diagnóstico por imagen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...