Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Europace ; 25(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37931071

RESUMEN

AIMS: Areas of conduction inhomogeneity (CI) during sinus rhythm may facilitate the initiation and perpetuation of atrial fibrillation (AF). Currently, no tool is available to quantify the severity of CI. Our aim is to develop and validate a novel tool using unipolar electrograms (EGMs) only to quantify the severity of CI in the atria. METHODS AND RESULTS: Epicardial mapping of the right atrium (RA) and left atrium, including Bachmann's bundle, was performed in 235 patients undergoing coronary artery bypass grafting surgery. Conduction inhomogeneity was defined as the amount of conduction block. Electrograms were classified as single, short, long double (LDP), and fractionated potentials (FPs), and the fractionation duration of non-single potentials was measured. The proportion of low-voltage areas (LVAs, <1 mV) was calculated. Increased CI was associated with decreased potential voltages and increased LVAs, LDPs, and FPs. The Electrical Fingerprint Score consisting of RA EGM features, including LVAs and LDPs, was most accurate in predicting CI severity. The RA Electrical Fingerprint Score demonstrated the highest correlation with the amount of CI in both atria (r = 0.70, P < 0.001). CONCLUSION: The Electrical Fingerprint Score is a novel tool to quantify the severity of CI using only unipolar EGM characteristics recorded. This tool can be used to stage the degree of conduction abnormalities without constructing spatial activation patterns, potentially enabling early identification of patients at high risk of post-operative AF or selection of the appropriate ablation approach in addition to pulmonary vein isolation at the electrophysiology laboratory.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Frecuencia Cardíaca , Atrios Cardíacos/cirugía , Mapeo Epicárdico , Nodo Atrioventricular
2.
Cardiovasc Drugs Ther ; 37(6): 1243-1248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227441

RESUMEN

BACKGROUND: The presence of atrial fibrillation (AF) in heart failure (HF) patients with reduced ejection fraction is common and associated with an increased risk of stroke, hospitalization and mortality. Recent research findings indicate that a reduction in nicotinamide adenine dinucleotide (NAD+) levels results in mitochondrial dysfunction, DNA damage and consequently cardiomyocyte impairment in experimental and clinical HF and AF. The HF-AF ENERGY trial aims to investigate the cardioprotective effects of the NAD+ precursor nicotinamide riboside (NR) treatment in ischemic heart disease patients diagnosed with AF. STUDY DESIGN: The HF-AF ENERGY trial is a prospective intervention study. The study consists of a (retrospective) 4 months observation period and a 4 months intervention period. The cardioprotective effect of NR on AF burden is investigated by remote monitoring software of implantable cardiac defibrillators (ICDs), which enables continuous atrial rhythm monitoring detection. Cardiac dimension and function are examined by echocardiography. Laboratory blood analysis is performed to determine mitochondrial function markers and energy metabolism. All the study parameters are assessed at two fixed time points (pre- and post-treatment). Pre- and post-treatment outcomes are compared to determine the effects of NR treatment on AF burden, mitochondrial function markers and energy metabolism. CONCLUSION: The HF-AF ENERGY trial investigates the cardioprotective effects of NR on AF burden and whether NR normalizes blood-based mitochondrial function markers and energy metabolites of the NAD metabolome in ischemic heart disease patients diagnosed with AF. The study outcomes elucidate whether NAD+ metabolism can be used as a future therapy for HF patients with AF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Isquemia Miocárdica , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/complicaciones , NAD , Estudios Prospectivos , Estudios Retrospectivos , Volumen Sistólico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Isquemia Miocárdica/complicaciones
3.
Cells ; 11(3)2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159236

RESUMEN

BACKGROUND: The current paradigm is that fibrosis promotes electrophysiological disorders and drives atrial fibrillation (AF). In this current study, we investigated the relation between the degree of fibrosis in human atrial tissue samples of controls and patients in various stages of AF and the degree of electrophysiological abnormalities. METHODS: The degree of fibrosis was measured in the atrial tissue and serum of patients in various stages of AF and the controls. Hereto, picrosirius and H&E staining were performed to quantify degree of total, endo-perimysial fibrosis, and cardiomyocyte diameter. Western blot quantified fibrosis markers: neural cell adhesion molecule, tissue inhibitor of metalloproteinase, lysyl oxidase, and α-smooth muscle actin. In serum, the ratio carboxyl-terminal telopeptide of collagen/matrix-metalloproteinase1 was determined. High-resolution epicardial mapping evaluated low-voltage areas and conduction abnormalities. RESULTS: No significant differences were observed in the degree of fibrosis between the groups. Finally, no significant correlation-absolute nor spatial-was observed between all electrophysiological parameters and histological fibrosis markers. CONCLUSIONS: No differences in the degree of fibrosis were observed in patients from various stages of AF compared to the controls. Moreover, electrophysiological abnormalities did not correlate with any of the fibrosis markers. The findings indicate that fibrosis is not the hallmark of structural remodeling in AF.


Asunto(s)
Fibrilación Atrial , Fibrilación Atrial/patología , Biomarcadores/metabolismo , Colágeno/metabolismo , Fibrosis , Atrios Cardíacos/metabolismo , Humanos
4.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445167

RESUMEN

Atrial fibrillation (AF) is the most prevalent and progressive cardiac arrhythmia worldwide and is associated with serious complications such as heart failure and ischemic stroke. Current treatment modalities attenuate AF symptoms and are only moderately effective in halting the arrhythmia. Therefore, there is an urgent need to dissect molecular mechanisms that drive AF. As AF is characterized by a rapid atrial activation rate, which requires a high energy metabolism, a role of mitochondrial dysfunction in AF pathophysiology is plausible. It is well known that mitochondria play a central role in cardiomyocyte function, as they produce energy to support the mechanical and electrical function of the heart. Details on the molecular mechanisms underlying mitochondrial dysfunction are increasingly being uncovered as a contributing factor in the loss of cardiomyocyte function and AF. Considering the high prevalence of AF, investigating the role of mitochondrial impairment in AF may guide the path towards new therapeutic and diagnostic targets. In this review, the latest evidence on the role of mitochondria dysfunction in AF is presented. We highlight the key modulators of mitochondrial dysfunction that drive AF and discuss whether they represent potential targets for therapeutic interventions and diagnostics in clinical AF.


Asunto(s)
Fibrilación Atrial/diagnóstico , Fibrilación Atrial/patología , Mitocondrias Cardíacas/patología , Animales , Fibrilación Atrial/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Metabolismo Energético , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Humanos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...