Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704825

RESUMEN

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Preescolar , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma , Adulto Joven
4.
Neurol Genet ; 6(1): e381, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042910

RESUMEN

OBJECTIVE: To describe the clinical and functional consequences of 1 novel and 1 previously reported truncating MT-ATP6 mutation. METHODS: Three unrelated probands with mitochondrial encephalomyopathy harboring truncating MT-ATP6 mutations are reported. Transmitochondrial cybrid cell studies were used to confirm pathogenicity of 1 novel variant, and the effects of all 3 mutations on ATPase 6 and complex V structure and function were investigated. RESULTS: Patient 1 presented with adult-onset cerebellar ataxia, chronic kidney disease, and diabetes, whereas patient 2 had myoclonic epilepsy and cerebellar ataxia; both harbored the novel m.8782G>A; p.(Gly86*) mutation. Patient 3 exhibited cognitive decline, with posterior white matter abnormalities on brain MRI, and severely impaired renal function requiring transplantation. The m.8618dup; p.(Thr33Hisfs*32) mutation, previously associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa, was identified. All 3 probands demonstrated a broad range of heteroplasmy across different tissue types. Blue-native gel electrophoresis of cultured fibroblasts and skeletal muscle tissue confirmed multiple bands, suggestive of impaired complex V assembly. Microscale oxygraphy showed reduced basal respiration and adenosine triphosphate synthesis, while reactive oxygen species generation was increased. Transmitochondrial cybrid cell lines studies confirmed the deleterious effects of the novel m.8782 G>A; p.(Gly86*) mutation. CONCLUSIONS: We expand the clinical and molecular spectrum of MT-ATP6-related mitochondrial disorders to include leukodystrophy, renal disease, and myoclonic epilepsy with cerebellar ataxia. Truncating MT-ATP6 mutations may exhibit highly variable mutant levels across different tissue types, an important consideration during genetic counseling.

5.
J Clin Med ; 8(7)2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288420

RESUMEN

TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases.

6.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039582

RESUMEN

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Asunto(s)
Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Adulto , Biomarcadores , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/metabolismo , Modelos Biológicos , Linaje , Fenotipo , Secuenciación del Exoma
7.
Mitochondrion ; 47: 294-297, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30743023

RESUMEN

Adult-onset Leigh syndrome is a rare but important manifestation of mitochondrial disease. We report a 17 year old female who presented with subacute encephalopathy, brainstem and extrapyramidal signs, raised CSF lactate, and symmetrical hyperintensities in the basal ganglia on T2-weighted cerebral MRI. The presence of cytochrome c oxidase deficient fibres in muscle tissue prompted sequencing of the entire mitochondrial genome which revealed the novel stop codon mutation m.6579G>A; p.Gly226X in MT-CO1. Here we present the case and review the clinicopathological and molecular spectrum of previously reported MT-CO1 truncating mutations.


Asunto(s)
Codón de Terminación , Complejo IV de Transporte de Electrones/genética , Enfermedad de Leigh/genética , Atrofias Ópticas Hereditarias/genética , Adulto , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Enfermedad de Leigh/enzimología , Atrofias Ópticas Hereditarias/enzimología
9.
Neurol Genet ; 3(3): e149, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28508084

RESUMEN

OBJECTIVE: Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. METHODS: RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. RESULTS: Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. CONCLUSIONS: In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation.

10.
Discov Med ; 20(111): 325-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26645904

RESUMEN

Mitochondrial disorders are now well recognized as an important cause of genetic disease. They exhibit remarkable phenotypic, biochemical, and molecular heterogeneity, and frequently involve multiple organ systems. Their complexity partly relates to the dual expression of mitochondrial proteins by both mitochondrial and nuclear genomic DNA. Multiple copies of mitochondrial DNA (mtDNA) are present in a single human mitochondrion. Each molecule exists as a double-stranded, circular, helical structure containing 37 genes: 13 encode polypeptide subunits, whilst the remaining 24 encode 22 transfer and 2 ribosomal RNAs necessary for their synthesis. These protein subunits contribute towards four of five multimeric enzymes (so-called complex I/III/IV/V, with complex II entirely nuclear-encoded) embedded in the inner mitochondrial membrane. The enzymes catalyze a sequence of redox reactions which ultimately generates adenine triphosphate, the cellular unit of energy, during oxidative phosphorylation (OXPHOS). The remaining OXPHOS subunits (more than 70 in total), in addition to the apparatus required for their transcription, translation, post-translational modification and assembly, are nuclear-encoded. The mitochondrion's dependence on nuclear DNA extends further to include the machinery required for the maintenance, replication, and repair of mtDNA molecules, the proteins for which are synthesized in the cell cytoplasm prior to transport across mitochondrial membrane for replication. Recent advancements in DNA analysis using next generation sequencing technology have provided an unprecedented expansion in the depth of knowledge concerning both molecular mechanisms and biological pathways which underpin many mitochondrial diseases. This understanding has led to the emergence of many potential targets and treatment strategies for these disorders for which there is currently no cure. This review highlights the challenges to therapy development and clinical trial design and outlines the approaches currently being investigated to treat this diverse group of disorders.


Asunto(s)
Genoma Humano , Genoma Mitocondrial , Enfermedades Mitocondriales , Proteínas Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...