Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 7(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33646095

RESUMEN

The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAIEC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Proteínas de la Membrana/genética , Interacciones Microbianas , Plásmidos/metabolismo
2.
PLoS One ; 10(3): e0120265, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25786241

RESUMEN

Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI⁺ inhibitor cells to the same extent as BTH_I0986⁺ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species.


Asunto(s)
Burkholderia pseudomallei/genética , Cromosomas Bacterianos , Inhibición de Contacto/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Toxinas Bacterianas/biosíntesis , Burkholderia pseudomallei/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Periplasma/metabolismo , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
3.
PLoS Genet ; 10(3): e1004255, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675981

RESUMEN

Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic "orphan" toxin encoded within the rearrangement hotspot (rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the "main" rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution.


Asunto(s)
Toxinas Bacterianas/genética , Evolución Molecular , Variación Genética , Salmonella typhimurium/genética , Secuencia de Aminoácidos , Animales , Toxinas Bacterianas/biosíntesis , Proliferación Celular , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Humanos , Ratones , Salmonella typhimurium/crecimiento & desarrollo
4.
Artículo en Inglés | MEDLINE | ID: mdl-24492845

RESUMEN

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. CDI(+) cells bind to susceptible target bacteria and deliver a toxic effector domain derived from the carboxyl terminus of CdiA (CdiA-CT). More than 60 distinct CdiA-CT sequence types have been identified, and all CDI toxins characterized thus far display RNase, DNase, or pore-forming activities. CDI systems also encode CdiI immunity proteins, which specifically bind and inactivate cognate CdiA-CT toxins to prevent autoinhibition. CDI activity appears to be limited to target cells of the same species, suggesting that these systems play a role in competition between closely related bacteria. Recent work on the CDI system from uropathogenic Escherichia coli (UPEC 536) has revealed that its CdiA-CT toxin binds tightly to a cysteine biosynthetic enzyme (CysK) in the cytoplasm of target cells. The unanticipated complexity in the UPEC CDI pathway raises the possibility that these systems perform other functions in addition to growth inhibition. Finally, we propose that the phenomenon of CDI is more widespread than previously appreciated. Rhs (rearrangement hotspot) systems encode toxin-immunity pairs, some of which share significant sequence identity with CdiA-CT/CdiI proteins. A number of recent observations suggest that Rhs proteins mediate a distinct form of CDI.


Asunto(s)
Adhesión Bacteriana/fisiología , Inhibición de Contacto/fisiología , Proteínas de Escherichia coli/fisiología , Proteínas de la Membrana/fisiología , Proteínas de la Membrana Bacteriana Externa/fisiología , Toxinas Bacterianas/metabolismo , Burkholderia/fisiología , Escherichia coli/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo
5.
PLoS One ; 8(5): e64285, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23737977

RESUMEN

The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system. Metabolic characteristics predicted from the metagenomes suggested R. mucilaginosa have adapted to live within the microaerophilic surface of the mucus layer in CF lungs. The results also highlight the remarkable evolutionary and ecological similarities of many CF pathogens; further examination of these similarities has the potential to guide patient care and treatment.


Asunto(s)
Adaptación Fisiológica/genética , Fibrosis Quística/microbiología , Pulmón/microbiología , Metagenómica , Micrococcaceae/genética , Micrococcaceae/fisiología , Modelos Biológicos , Humanos , Anotación de Secuencia Molecular , Operón/genética , ARN Bacteriano/genética , ARN Ribosómico/genética
6.
J Biol Chem ; 287(35): 29765-75, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22791716

RESUMEN

The translation of non-stop mRNA (which lack in-frame stop codons) represents a significant quality control problem for all organisms. In eubacteria, the transfer-messenger RNA (tmRNA) system facilitates recycling of stalled ribosomes from non-stop mRNA in a process termed trans-translation or ribosome rescue. During rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which promotes polypeptide degradation after release from the stalled ribosome. Escherichia coli possesses an additional ribosome rescue pathway mediated by the ArfA peptide. The E. coli arfA message contains a hairpin structure that is cleaved by RNase III to produce a non-stop transcript. Therefore, ArfA levels are controlled by tmRNA through ssrA-peptide tagging and proteolysis. Here, we examine whether ArfA homologues from other bacteria are also regulated by RNase III and tmRNA. We searched 431 arfA coding sequences for mRNA secondary structures and found that 82.8% of the transcripts contain predicted hairpins in their 3'-coding regions. The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fischeri, and Pasteurella multocida are all cleaved by RNase III as predicted, whereas the hairpin from Neisseria gonorrhoeae functions as an intrinsic transcription terminator to generate non-stop mRNA. Each ArfA homologue is ssrA-tagged and degraded when expressed in wild-type E. coli cells, but accumulates in mutants lacking tmRNA. Together, these findings show that ArfA synthesis from non-stop mRNA is a conserved mechanism to regulate the alternative ribosome rescue pathway. This strategy ensures that ArfA homologues are only deployed when the tmRNA system is incapacitated or overwhelmed by stalled ribosomes.


Asunto(s)
Codón de Terminación , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Biosíntesis de Proteínas/fisiología , Proteolisis , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/biosíntesis , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
7.
Mol Microbiol ; 84(3): 516-29, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22435733

RESUMEN

Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis--a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Inhibición de Contacto , Melioidosis/inmunología , Melioidosis/microbiología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Familia de Multigenes
8.
PLoS Genet ; 7(8): e1002217, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21829394

RESUMEN

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These "orphan" cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proliferación Celular , Inhibición de Contacto/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Orden Génico , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular
9.
Virulence ; 2(4): 356-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21705856

RESUMEN

Contact-dependent growth inhibition (CDI) is the first contact-dependent competition system identified in bacteria. CDI is mediated by the CdiA/CdiB two-partner secretion system, and the BamA outer membrane protein serves as the CDI receptor on target cells. A small immunity protein, CdiI, is required to protect inhibitor cells from their own CDI system. Recent results from our group show that CDI systems are present in a number of important gram-negative plant and animal pathogens. The C-terminal region of CdiA (CdiA-CT) is polymorphic and contains growth inhibitory activity. The CdiA-CT from uropathogenic Esherichia coli 536 is a tRNase whereas a CdiA-CT from Dickeya dadantii 3937 has DNase activity. Accordingly, these bacteria contain distinct CdiI proteins, which specifically bind and inactivate cognate CdiA-CT. Remarkably, CdiA-CTs are modular: one CdiA "stick" can deliver different CdiA-CT toxins. We discuss these findings as well as results showing that CDI plays an important role in intra-strain bacterial competition in the natural world. A detailed mechanistic understanding of CDI could facilitate development of probiotics and antimicrobials that target specific pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Bacterias Gramnegativas/fisiología , Secuencia de Aminoácidos , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Bacterias Gramnegativas/química , Bacterias Gramnegativas/genética , Datos de Secuencia Molecular , Alineación de Secuencia
10.
Nature ; 468(7322): 439-42, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21085179

RESUMEN

Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein' onto the cell surface. An additional small immunity protein (CdiI) protects CDI(+) cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI(+) cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli Uropatógena/metabolismo , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Inhibición de Contacto/inmunología , Inhibición de Contacto/fisiología , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Escherichia coli Uropatógena/enzimología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo
11.
J Am Coll Nutr ; 28(6): 687-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20516269

RESUMEN

BACKGROUND: Carotenoids are an important group of phytonutrients that are abundant in fruits and vegetables. Epidemiological and clinical intervention studies have implied the presence of protective qualities of these nutrients against the development of a variety of chronic diseases. Previously, human carotenoid status has been assessed in serum and tissue using high-performance liquid chromatography (HPLC) methodology. Recently, a Raman spectroscopy (RS)-based photonic method has been developed to accurately and noninvasively measure the carotenoid concentration in human skin. OBJECTIVES: (1) To validate skin RS methodology against standard serum carotenoid measurements by HPLC and (2) to establish and compare the reliability of the 2 methods. DESIGN: This study included 372 healthy adults who provided 3 blood samples and 3 RS skin carotenoid measurements within an 8-day period; each day-matched blood sample and RS determination was spaced by >or=48 hours. RESULTS: Consistent positive correlations were observed for each of 3 separate same-day correlation plots of total serum versus RS skin carotenoids. Overall estimate of the line of best fit from analysis of covariance, using all 3 samples (n = 1116), yielded a Pearson correlation of R = 0.81 (r(2) = 0.66; p < 0.001). Based on analysis of variance, RS skin carotenoid methodology exhibited 0.9% less variance over the 3 tests than serum carotenoids by the HPLC method (p < 0.03). CONCLUSIONS: RS accurately measures total carotenoids in human skin with less intra-individual variability than measurement of serum carotenoids by HPLC analysis. RS technology is a valid and reliable noninvasive method to rapidly assess carotenoid nutritional status in humans.


Asunto(s)
Carotenoides/análisis , Carotenoides/metabolismo , Estado Nutricional/fisiología , Piel/metabolismo , Espectrometría Raman , Adolescente , Adulto , Anciano , Análisis de Varianza , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA