Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 46(4): 720-734, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37078466

RESUMEN

Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Tripeptidil Peptidasa 1 , Animales , Ratones , Encéfalo/patología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Proteómica
2.
Sci Rep ; 12(1): 5680, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383204

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.


Asunto(s)
COVID-19 , Hurones , Animales , Mucosa Nasal , SARS-CoV-2 , Carga Viral
3.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33400387

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Asunto(s)
COVID-19 , Hurones , Animales , Australia , COVID-19/veterinaria , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
4.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972565

RESUMEN

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

5.
Mol Ther Methods Clin Dev ; 20: 497-507, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33665223

RESUMEN

Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease (Cln6 nclf ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye. Here, we examine whether cerebrospinal fluid (CSF) delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual deficits in Cln6 nclf mice. We show that intracerebroventricular (i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hallmark Batten disease pathology in the visual processing centers of the brain, preserving neurons of the superior colliculus, thalamus, and cerebral cortex. Importantly, i.c.v.-delivered scAAV9.CB.CLN6 also expresses in many cells throughout the central retina, preserving many photoreceptors typically lost in Cln6 nclf mice. Lastly, scAAV9.CB.CLN6 treatment partially preserved visual acuity in Cln6 nclf mice as measured by optokinetic response. Taken together, we report the first instance of CSF-delivered viral gene reaching and rescuing pathology in both the brain parenchyma and retinal neurons, thereby partially slowing visual deterioration.

6.
NPJ Vaccines ; 5: 96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083031

RESUMEN

The 'D614G' mutation (Aspartate-to-Glycine change at position 614) of the SARS-CoV-2 spike protein has been speculated to adversely affect the efficacy of most vaccines and countermeasures that target this glycoprotein, necessitating frequent vaccine matching. Virus neutralisation assays were performed using sera from ferrets which received two doses of the INO-4800 COVID-19 vaccine, and Australian virus isolates (VIC01, SA01 and VIC31) which either possess or lack this mutation but are otherwise comparable. Through this approach, supported by biomolecular modelling of this mutation and the commonly-associated P314L mutation in the RNA-dependent RNA polymerase, we have shown that there is no experimental evidence to support this speculation. We additionally demonstrate that the putative elastase cleavage site introduced by the D614G mutation is unlikely to be accessible to proteases.

8.
Adv Ther ; 22(1): 1-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15943216

RESUMEN

Therapeutic interchange has long been an integral part of drug formulary management, but physicians' and pharmacists' attitudes toward such programs are relatively unknown. This survey was undertaken to determine pharmacists' attitudes, physicians' potential response to a hypothetical interchange, and how well pharmacists predicted physicians' responses. A survey that described a drug interchange program and several potential responses to the proposed switch was provided to 300 staff physicians at a 512-bed community facility in southwest Florida; the survey was also mailed to pharmacy directors or clinical pharmacy coordinators at 42 southwest Florida hospitals. Responses were obtained from 98 physicians and 95 pharmacists. Most physicians would not cooperate with an interchange if they were not familiar with the proposed drug; 16% would continue to prescribe the original drug, knowing that the new agent would be provided; and 58% would switch to another agent with which they had clinical experience. Only 26% of physicians would follow the interchange program. In contrast, 48% of pharmacists believed that physicians would continue to order the original therapy, 32% believed that physicians would order the new agent, and only 20% believed that physicians would switch to an alternative drug (P<.005 vs physician responses). Clearly, pharmacists' expectations of physicians' response to a therapeutic interchange differ significantly from the physicians' expected behavior. This difference has potentially important implications for actual versus projected cost savings of therapeutic interchange.


Asunto(s)
Actitud del Personal de Salud , Utilización de Medicamentos , Formularios de Hospitales como Asunto , Servicio de Farmacia en Hospital , Pautas de la Práctica en Medicina , Control de Costos , Costos de los Medicamentos , Florida , Encuestas de Atención de la Salud , Humanos , Cuerpo Médico de Hospitales/psicología , Farmacéuticos/psicología , Equivalencia Terapéutica
9.
Cancer Res ; 63(6): 1389-97, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12649204

RESUMEN

In women, >80% of malignant ovarian tumors are of epithelial origin. Early detection of these tumors is very challenging,and extensive i.p. dissemination is common by the time of diagnosis. The lack of adequate geneticmouse models of ovarian carcinomas significantly delays advances in early detection and treatment. We report that female transgenic mice expressing the transforming region of SV40 under control of the Mullerian inhibitory substance type II receptor gene promoter develop bilateral ovarian tumors in approximately 50% of cases. Histologically, these tumors are poorly differentiated carcinomas with occasional cysts and papillary structures present at the surface of the ovary. These tumors disseminate i.p., invade omentum, and form ascites as do human ovarian carcinomas. The epithelial origin of these tumors is supported by detection of cytokeratins 8 and 19, and the absence of alpha-inhibin, a protein characteristically expressed in normal granulosa cells and most granulosa cell tumors. Cell lines derived from the ascites exhibit the properties of epithelial ovarian cancer, such as anchorage-independent growth, tumorigenicity in immunocompromised mice, expression of epithelial cell markers, and organotropic implantation. The availability of a transgenic mouse model of disseminated ovarian carcinoma and respective cell lines should advance our understanding of this neoplasm, and serve as a useful tool for the evaluation of emerging detection and treatment strategies.


Asunto(s)
Antígenos Transformadores de Poliomavirus/genética , Neoplasias Ováricas/genética , Receptores de Péptidos/genética , Animales , Antígenos Transformadores de Poliomavirus/biosíntesis , Quimera/genética , Modelos Animales de Enfermedad , Epitelio/metabolismo , Epitelio/patología , Epitelio/fisiología , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Embarazo , Regiones Promotoras Genéticas , Receptores de Péptidos/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta , Secuencias Reguladoras de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...