Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 249: 113720, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004492

RESUMEN

Ptychography is a lensless imaging technique that is aberration-free and capable of imaging both the amplitude and the phase of radiation reflected or transmitted from an object using iterative algorithms. Working with extreme ultraviolet (EUV) light, ptychography can provide better resolution than conventional optical microscopy and deeper penetration than scanning electron microscope. As a compact lab-scale EUV light sources, high harmonic generation meets the high coherence requirement of ptychography and gives more flexibilities in both budget and experimental time compared to synchrotrons. The ability to measure phase makes reflection-mode ptychography a good choice for characterising both the surface topography and the internal structural changes in EUV multilayer mirrors. This paper describes the use of reflection-mode ptychography with a lab-scale high harmonic generation based EUV light source to perform quantitative measurement of the amplitude and phase reflection from EUV multilayer mirrors with engineered substrate defects. Using EUV light at 29.6nm from a tabletop high harmonic generation light source, a lateral resolution down to ∼88nm and a phase resolution of 0.08rad (equivalent to topographic height variation of 0.27nm) are achieved. The effect of surface distortion and roughness on EUV reflectivity is compared to topographic properties of the mirror defects measured using both atomic force microscopy and scanning transmission electron microscopy. Modelling of reflection properties from multilayer mirrors is used to predict the potential of a combination of on-resonance, actinic ptychographic imaging at 13.5nm and atomic force microscopy for characterising the changes in multilayered structures.

2.
Sci Adv ; 6(18): eaaz3025, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494674

RESUMEN

Microscopy with extreme ultraviolet (EUV) light can provide many advantages over optical, hard x-ray or electron-based techniques. However, traditional EUV sources and optics have large disadvantages of scale and cost. Here, we demonstrate the use of a laboratory-scale, coherent EUV source to image biological samples-mouse hippocampal neurons-providing quantitative phase and amplitude transmission information with a lateral resolution of 80 nm and an axial sensitivity of ~1 nm. A comparison with fluorescence imaging of the same samples demonstrated EUV imaging was able to identify, without the need for staining or superresolution techniques, <100-nm-wide and <10-nm-thick structures not observable from the fluorescence images. Unlike hard x-ray microscopy, no damage is observed of the delicate neuron structure. The combination of previously demonstrated tomographic imaging techniques with the latest advances in laser technologies and coherent EUV sources has the potential for high-resolution element-specific imaging within biological structures in 3D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA