Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(9): 2397-2417, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623840

RESUMEN

Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.


Asunto(s)
Encéfalo , Encéfalo/fisiología , Humanos , Animales , Mapeo Encefálico/instrumentación , Neuronas/fisiología , Neuronas/citología , Silicio/química , Nanotecnología/instrumentación , Optogenética/instrumentación
2.
Neurophotonics ; 11(Suppl 1): S11503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38322247

RESUMEN

Significance: Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to in vivo brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging. Aim: Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue. Approach: Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue. Results: Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle. Conclusions: Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging in vivo.

3.
Front Neurosci ; 17: 1213265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521687

RESUMEN

Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.

4.
Nat Commun ; 14(1): 2641, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156850

RESUMEN

Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption. Here, we introduce a laser beam scanner that meets these requirements. Using microcantilevers embedded with silicon nitride nanophotonic circuitry, we demonstrate broadband, one- and two-dimensional steering of light with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact ~0.1 mm2 areas, consume ~31 to 46 mW of power, are simple to control, and emit a single light beam. The microcantilevers are monolithically integrated in an active photonic platform on 200-mm silicon wafers. The microcantilever-integrated photonic circuits miniaturize and simplify light projectors to enable versatile, power-efficient, and broadband laser scanner microchips.

5.
Biosens Bioelectron ; 222: 114942, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493722

RESUMEN

Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 µM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.


Asunto(s)
Bioimpresión , Técnicas Biosensibles , Óxido de Zinc , Humanos , Dopamina , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Nat Commun ; 13(1): 6362, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289213

RESUMEN

Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring.

7.
Opt Lett ; 47(5): 1073-1076, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230293

RESUMEN

Implantable silicon neural probes with integrated nanophotonic waveguides can deliver patterned dynamic illumination into brain tissue at depth. Here, we introduce neural probes with integrated optical phased arrays and demonstrate optical beam steering in vitro. Beam formation in brain tissue is simulated and characterized. The probes are used for optogenetic stimulation and calcium imaging.


Asunto(s)
Optogenética , Silicio , Encéfalo/diagnóstico por imagen
8.
Opt Express ; 30(5): 7225-7237, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299489

RESUMEN

We demonstrate power-efficient, thermo-optic, silicon nitride waveguide phase shifters for blue, green, and yellow wavelengths. The phase shifters operated with low power consumption due to a suspended structure and multi-pass waveguide design. The devices were fabricated on 200-mm silicon wafers using deep ultraviolet lithography as part of an active visible-light integrated photonics platform. The measured power consumption to achieve a π phase shift (averaged over multiple devices) was 0.78, 0.93, 1.09, and 1.20 mW at wavelengths of 445, 488, 532, and 561 nm, respectively. The phase shifters were integrated into Mach-Zehnder interferometer switches, and 10 - 90% rise(fall) times of about 570(590) µs were measured.

9.
Opt Lett ; 47(1): 26-29, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951874

RESUMEN

We report multicore fibers (MCFs) with 10 and 16 linearly distributed cores with single-mode operation in the visible spectrum. The average propagation loss of the cores is 0.06 dB/m at λ = 445 nm and < 0.03 dB/m at wavelengths longer than 488 nm. The low inter-core crosstalk and nearly identical performance of the cores make these MCFs suitable for spatial division multiplexing in the visible spectrum. As a proof-of-concept application, one of the MCFs was coupled to an implantable neural probe to spatially address light-emitting gratings on the probe.

10.
Opt Express ; 29(21): 34565-34576, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809243

RESUMEN

Low-loss broadband fiber-to-chip coupling is currently challenging for visible-light photonic-integrated circuits (PICs) that need both high confinement waveguides for high-density integration and a minimum feature size above foundry lithographical limit. Here, we demonstrate bi-layer silicon nitride (SiN) edge couplers that have ≤ 4 dB/facet coupling loss with the Nufern S405-XP fiber over a broad optical wavelength range from 445 to 640 nm. The design uses a thin layer of SiN to expand the mode at the facet and adiabatically transfers the input light into a high-confinement single-mode waveguide (150-nm thick) for routing, while keeping the minimum nominal lithographic feature size at 150 nm. The achieved fiber-to-chip coupling loss is about 3 to 5 dB lower than that of single-layer designs with the same waveguide confinement and minimum feature size limitation.

11.
Neurophotonics ; 8(2): 025003, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898636

RESUMEN

Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses < 16 µ m for propagation distances up to 300 µ m in free space. Imaging areas were as large as ≈ 240 µ m × 490 µ m in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals.

12.
Opt Express ; 28(26): 38579-38591, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379425

RESUMEN

We demonstrate foundry-fabricated O-band III-V-on-silicon discrete-mode lasers. The laser fabrication follows the back-side-on-buried-oxide laser integration process and is compatible with complex, multilayer, silicon-on-insulator based platforms. A series of devices were characterized, with the best devices producing on-chip powers of nearly 20 mW with Lorentzian linewidths below 20 kHz and a side mode suppression ratio of at least 60 dB.

13.
Neuron ; 108(1): 66-92, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33058767

RESUMEN

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm3 volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Neuronas/patología , Imagen Óptica/métodos , Animales , Encéfalo/patología , Encéfalo/fisiología , Simulación por Computador , Sistemas de Computación , Neuroimagen Funcional/instrumentación , Procedimientos Analíticos en Microchip , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Neuronas/fisiología , Imagen Óptica/instrumentación , Óptica y Fotónica , Optogenética
14.
J Biophotonics ; 13(2): e201960083, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31710771

RESUMEN

Optical coherence tomography can differentiate brain regions with intrinsic contrast and at a micron scale resolution. Such a device can be particularly useful as a real-time neurosurgical guidance tool. We present, to our knowledge, the first full-field swept-source optical coherence tomography system operating near a wavelength of 1310 nm. The proof-of-concept system was integrated with an endoscopic probe tip, which is compatible with deep brain stimulation keyhole neurosurgery. Neuroimaging experiments were performed on ex vivo brain tissues and in vivo in rat brains. Using classification algorithms involving texture features and optical attenuation, images were successfully classified into three brain tissue types.


Asunto(s)
Algoritmos , Tomografía de Coherencia Óptica , Encéfalo/diagnóstico por imagen , Neuroimagen
15.
Opt Express ; 27(26): 37400-37418, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878521

RESUMEN

We present passive, visible light silicon nitride waveguides fabricated on ≈ 100 µm thick 200 mm silicon wafers using deep ultraviolet lithography. The best-case propagation losses of single-mode waveguides were ≤ 2.8 dB/cm and ≤ 1.9 dB/cm over continuous wavelength ranges of 466-550 nm and 552-648 nm, respectively. In-plane waveguide crossings and multimode interference power splitters are also demonstrated. Using this platform, we realize a proof-of-concept implantable neurophotonic probe for optogenetic stimulation of rodent brains. The probe has grating coupler emitters defined on a 4 mm long, 92 µm thick shank and operates over a wide wavelength range of 430-645 nm covering the excitation spectra of multiple opsins and fluorophores used for brain stimulation and imaging.

16.
Opt Express ; 27(1): 102-109, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30645351

RESUMEN

We demonstrate high-bandwidth O-band Mach-Zehnder modulators with indium phosphide-on-silicon (InP-on-Si) capacitive phase shifters that are compatible with heterogeneous laser fabrication processes. An electro-optic conversion efficiency of 1.3 V⋅cm and a 3 dB bandwidth of up to 30 GHz was observed for a phase modulator length of 250 µm at a 0 V bias. Open eye patterns were observed at up to 25 Gb/s.

17.
Opt Express ; 26(23): 30623-30633, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469956

RESUMEN

A polarization-independent grating coupler is proposed and demonstrated in a 3-layer silicon nitride-on-silicon photonic platform. Polarization independent coupling was made possible by the supermodes and added degrees of geometric freedom unique to the 3-layer photonic platform. The grating was designed via optimization algorithms, and the simulated peak coupling efficiency was -2.1 dB with a 1 dB polarization dependent loss (PDL) bandwidth of 69 nm. The fabricated grating couplers had a peak coupling efficiency of -4.8 dB with 1 dB PDL bandwidth of over 100 nm.

18.
Opt Express ; 26(10): 13656-13665, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801388

RESUMEN

Silicon nitride-on-silicon bi-layer grating couplers were designed for the O-band using an optimization-based procedure that accounted for design rules and fabricated on a 200 mm wafer. The designs were sufficiently robust to fabrication variations to function well across the wafer. A peak fiber-to-chip coupling efficiency to standard single mode fiber of -2.2 dB and a 1-dB bandwidth of 72.9 nm was achieved in the representative device. Over several chips across the wafer, we measured a median peak coupling efficiency of -2.1 dB and median 1-dB bandwidth of 70.8 nm. The measurements had good correspondence with simulation.

19.
Opt Express ; 26(25): 32757, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645436

RESUMEN

We correct two minor errors in the manuscript. The effective diameter of the ring modulator should be 62.5 µm rather than 65 µm. The factor, g, in the FOM for comparing between the O- and C-band results should be 0.83 instead of 0.7.

20.
Opt Express ; 25(25): 30862-30875, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29245766

RESUMEN

We present a three-layer silicon nitride on silicon platform for constructing very large photonic integrated circuits. Efficient interlayer transitions are enabled by the close spacing between adjacent layers, while ultra-low-loss crossings are enabled by the large spacing between the topmost and bottommost layers. We demonstrate interlayer taper transitions with losses < 0.15 dB for wavelengths spanning from 1480 nm to 1620 nm. Our overpass waveguide crossings exhibit insertion loss < 2.1 mdB and crosstalk below -56 dB in the wavelength range between 1480 nm and 1620 nm with losses as low as 0.28 mdB. Our platform architecture is suited to meet the demands of large-scale photonic circuits which contain hundreds of crossings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...