Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 308, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366290

RESUMEN

The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Pathol Res Pract ; 251: 154897, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862921

RESUMEN

Small nucleolar RNA host gene 12 (SNHG12) is a long non-coding RNA (lncRNA) that contributes in a variety of human pathologies. This lncRNAs acts as molecular sponge for various miRNAs, namely miR-200c-5p, miR-129-5p, miR-30a-3p, miR-195, miR-133b, miR-199a/b-5p, miR-320b, miR-16, miR-15a, miR-218-5p, miR-320 and a number of other miRNAs. Through this mechanism, SNHG12 can affect activity of HIF-1α, Wnt/ß-catenin, VEGF, PI3K/AKT/mTOR, PTEN, NF-κB and ERK-1/2 signaling. SNHG12 can affect pathogenesis of several disorders, including those arising from genitourinary, gastrointestinal, pulmonary, central nervous and cardiovascular systems. These effects have been best characterized in the context of cancer where it can be used as a possible diagnostic and prognostic marker. In order to summarize the role of this lncRNA in human disorders, particularly cancer and highlight its potential application in biomedical studies, we designed the current review. We also emphasized on its diagnostic and prognostic roles.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , ARN Largo no Codificante/genética
3.
Front Genet ; 14: 1121982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441551

RESUMEN

SIRT1 is a member of the sirtuin family functioning in the process of removal of acetyl groups from different proteins. This protein has several biological functions and is involved in the pathogenesis of metabolic diseases, malignancy, aging, neurodegenerative disorders and inflammation. Several long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) have been found to interact with SIRT1. These interactions have been assessed in the contexts of sepsis, cardiomyopathy, heart failure, non-alcoholic fatty liver disease, chronic hepatitis, cardiac fibrosis, myocardial ischemia/reperfusion injury, diabetes, ischemic stroke, immune-related disorders and cancers. Notably, SIRT1-interacting non-coding RNAs have been found to interact with each other. Several circRNA/miRNA and lncRNA/miRNA pairs that interact with SIRT1 have been identified. These axes are potential targets for design of novel therapies for different disorders. In the current review, we summarize the interactions between three classes of non-coding RNAs and SIRT1.

4.
Noncoding RNA Res ; 8(3): 350-362, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37250456

RESUMEN

Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.

5.
Eur J Pharmacol ; 943: 175535, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731723

RESUMEN

Hypoxia-inducible factor 1α (HIF-1α) is a subunit of the HIF-1 transcription factor which is encoded by the HIF1A gene. This transcription factor is the main modulator of the cell response to hypoxia. Hypoxia-induced up-regulation of HIF-1α is involved in the pathogenesis of cancer. Recently, the interactions of several long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with HIF-1α have been reported. These ncRNAs regulate the expression of HIF-1α through different mechanisms. The regulatory roles of ncRNAs on HIF-1α are involved in the response of cancer cells to a wide range of anticancer drugs such as sorafenib, cisplatin, propofol, doxorubicin, and paclitaxel. Therefore, identification of the complex network between ncRNAs and HIF-1α not only facilitates the design of novel therapies but also promotes the efficacy of conventional anticancer treatments. This review aims to explain the interactions between these classes of ncRNAs and HIF-1α in the context of cancer.


Asunto(s)
Antineoplásicos , MicroARNs , Neoplasias , Humanos , Neoplasias/genética , MicroARNs/genética , MicroARNs/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Hipoxia/genética , Factores de Transcripción/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regulación Neoplásica de la Expresión Génica
6.
Pathol Res Pract ; 243: 154339, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736143

RESUMEN

Hippo pathway has been initially recognized as a regulatory mechanism for modulation of organ size in fruitfly. Subsequently, its involvement in the regulation of homeostasis and tumorigenesis has been identified. This pathway contains some tumor suppressor genes such as hippo (hpo) and warts (wts), as well as a number of oncogenic ones such as yorkie (yki). Recent studies have shown participation of Hippo pathway in the lung carcinogenesis. This pathway can affect lung cancer via different mechanisms. The interaction between some miRNAs and Hippo pathway is a possible mechanism for carcinogenic processes. Moreover, some other types of non-coding RNAs including PVT1, SFTA1P, NSCLCAT1 and circ_0067741 are implicated in this process. Besides, anti-cancer effects of gallic acid, icotinib hydrochloride, curcumin, ginsenoside Rg3, cryptotanshinone, nitidine chloride, cucurbitacin E, erlotinib, verteporfin, sophoridine, cisplatin and verteporfin in lung cancer are mediated through modulation of Hippo pathway. Here, we summarize the results of recent studies that investigated the role of Hippo signaling in the progression of lung cancer, the impact of non-coding RNAs on this pathway and the effects of anti-cancer agents on Hippo signaling in the context of lung cancer.


Asunto(s)
Proteínas de Drosophila , Neoplasias Pulmonares , Humanos , Vía de Señalización Hippo , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Verteporfina/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/farmacología , Neoplasias Pulmonares/patología
7.
Front Immunol ; 13: 982902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405753

RESUMEN

Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Antígeno B7-H1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico
8.
Front Immunol ; 13: 926895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238294

RESUMEN

NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1ß and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.


Asunto(s)
Inflamasomas , Daño por Reperfusión , Adenosina Trifosfato , Citocinas , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Isquemia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos
9.
Front Mol Biosci ; 9: 986722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177350

RESUMEN

Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) is a protein serine/threonine kinase which is activated upon binding with the GTP-bound form of Rho. This protein can modulate actin-myosin contraction and stability. Moreover, it has a crucial role in the regulation of cell polarity. Therefore, it participates in modulation of cell morphology, regulation of expression of genes, cell proliferation and differentiation, apoptotic processes as well as oncogenic processes. Recent studies have highlighted interactions between ROCK1 and several non-coding RNAs, namely microRNAs, circular RNAs and long non-coding RNAs. Such interactions can be a target of medications. In fact, it seems that the interactions are implicated in therapeutic response to several medications. In the current review, we aimed to explain the impact of these interactions in the pathoetiology of cancers as well as non-malignant disorders.

10.
Front Immunol ; 13: 877243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572537

RESUMEN

Interferons (IFNs) are a group of cellular proteins with critical roles in the regulation of immune responses in the course of microbial infections. Moreover, expressions of IFNs are dysregulated in autoimmune disorders. IFNs are also a part of immune responses in malignant conditions. The expression of these proteins and activities of related signaling can be influenced by a number of non-coding RNAs. IFN regulatory factors (IRFs) are the most investigated molecules in the field of effects of non-coding RNAs on IFN signaling. These interactions have been best assessed in the context of cancer, revealing the importance of immune function in the pathoetiology of cancer. In addition, IFN-related non-coding RNAs may contribute to the pathogenesis of neuropsychiatric conditions, systemic sclerosis, Newcastle disease, Sjögren's syndrome, traumatic brain injury, lupus nephritis, systemic lupus erythematosus, diabetes mellitus, and myocardial ischemia/reperfusion injury. In the current review, we describe the role of microRNAs and long non-coding RNAs in the regulation of IFN signaling.


Asunto(s)
Enfermedades Autoinmunes , Interferón Tipo I , Lupus Eritematoso Sistémico , Neoplasias , Síndrome de Sjögren , Animales , Enfermedades Autoinmunes/genética , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...