Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e30970, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803982

RESUMEN

Ultrathin electrospun poly (l-lactide-co-dl-lactide) nanofibrous membranes coated with fibronectin were explored as scaffolds for the ex vivo cultivation of limbal epithelial cells (LECs) for the treatment of limbal stem cell deficiency. The developed scaffolds were compared with the "gold-standard" fibrin gel. The resulting membranes composed of nanofibers possessed a very low thickness of 4 µm and allowed very good optical transparency in the wet state. The fibronectin-coated nanofibrous scaffolds demonstrated LEC expansion and successful cultivation similar to that on fibrin gel. Unlike the regular cobblestone epithelial cell morphology on the fibrin gel, the nanofibrous scaffold presented a mostly irregular epithelial morphology with a shift to a mesenchymal phenotype, as confirmed by the upregulation of profibroblastic genes: ACTA2 (p = 0.023), FBLN1 (p < 0.001), and THY1 (p < 0.001). Both culture conditions revealed comparable expression of stem cell markers, including KLF4, ΔNp63α and ABCG2, emphasizing the promise of polylactide-based nanofibrous membranes for further investigations.

2.
J Am Chem Soc ; 146(14): 10073-10083, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563738

RESUMEN

When water droplets move over a hydrophobic surface, they and the surface become oppositely charged by what is known as slide electrification. This effect can be used to generate electricity, but the physical and especially the chemical processes that cause droplet charging are still poorly understood. The most likely process is that at the base of the droplet, an electric double layer forms, and the interfacial charge remains on the surface behind the three-phase contact line. Here, we investigate the influence of the chemistry of surface (coating) and bulk (substrate) on the slide electrification. We measured the charge of a series of droplets sliding over hydrophobically coated (1-5 nm thickness) glass substrates. Within a series, the charge of the droplet decreases with the increasing droplet number and reaches a constant value after about 50 droplets (saturated state). We show that the charge of the first droplet depends on both coating and substrate chemistry. For a fully fluorinated or fully hydrogenated monolayer on glass, the influence of the substrate on the charge of the first droplet is negligible. In the saturated state, the chemistry of the substrate dominates. Charge separation can be considered as an acid base reaction between the ions of water and the surface. By exploiting the acidity (Pearson hardness) of elements such as aluminum, magnesium, or sodium, a positive saturated charge can be obtained by the counter charge remaining on the surface. With this knowledge, the droplet charge can be manipulated by the chemistry of the substrate.

3.
Colloids Surf B Biointerfaces ; 235: 113769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306803

RESUMEN

Polydopamine (PDA) is a widely used anchoring layer for multiple purposes. While simple to prepare, PDA is characterized by high chemical and topological diversity, which can limit its versatility. Unraveling the formation mechanism and physicochemical properties of continuous confluent layer and adherent nanoparticles on the nanoscale is crucial to further extend the prospective applications of PDA. Utilizing nano-FTIR spectroscopy, we investigate layers of PDA on three different substrates (silicon/silicon dioxide, nitrogen-doped titanium oxide, and gold substrates) at varying times of deposition (ToD). We observed a good correlation between the nano-FTIR and macroscopic FTIR spectra that reflected the changes in the relative abundance of PDA and polymerization intermediates as ToD increased. To gain analytical power, we utilized the principal component analysis (PCA) and extracted additional information from the resulting loadings spectral curves and data distribution in the score plots. We revealed a higher variability of the spectra of ultrathin surface confluent layers compared to the adherent nanoparticles. While the spectra of nanoparticles showed no apparent dependency on either ToD or the substrate material, the spectra of layers were highly affected by the increasing ToD and exhibited a rise in the absorption of PDA. Concomitantly, the spectra of layers grouped according to the substrate material at the lowest ToD point to the fact that the substrate material affects the PDA's initial physicochemical structure. The observed separation gradually diminished with the increasing ToD as the PDA physicochemical structure became less influenced by the substrate material.


Asunto(s)
Nanopartículas , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química , Nanopartículas/química , Indoles/química , Óxido Nítrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA