Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 19(10): e13220, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32852134

RESUMEN

As demonstrated by increased hippocampal insulin receptor density following learning in animal models and decreased insulin signaling, receptor density, and memory decline in aging and Alzheimer's diseases, numerous studies have emphasized the importance of insulin in learning and memory processes. This has been further supported by work showing that intranasal delivery of insulin can enhance insulin receptor signaling, alter cerebral blood flow, and improve memory recall. Additionally, inhibition of insulin receptor function or expression using molecular techniques has been associated with reduced learning. Here, we sought a different approach to increase insulin receptor activity without the need for administering the ligand. A constitutively active, modified human insulin receptor (IRß) was delivered to the hippocampus of young (2 months) and aged (18 months) male Fischer 344 rats in vivo. The impact of increasing hippocampal insulin receptor expression was investigated using several outcome measures, including Morris water maze and ambulatory gait performance, immunofluorescence, immunohistochemistry, and Western immunoblotting. In aged animals, the IRß construct was associated with enhanced performance on the Morris water maze task, suggesting that this receptor was able to improve memory recall. Additionally, in both age-groups, a reduced stride length was noted in IRß-treated animals along with elevated hippocampal insulin receptor levels. These results provide new insights into the potential impact of increasing neuronal insulin signaling in the hippocampus of aged animals and support the efficacy of molecularly elevating insulin receptor activity in vivo in the absence of the ligand to directly study this process.


Asunto(s)
Trastornos de la Memoria/metabolismo , Receptor de Insulina/metabolismo , Envejecimiento/metabolismo , Animales , Ingeniería Genética , Humanos , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/genética , Ratas , Ratas Endogámicas F344 , Receptor de Insulina/biosíntesis , Receptor de Insulina/genética , Transducción de Señal
2.
Front Neurosci ; 14: 668, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733189

RESUMEN

Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRß). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRß show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRß treatment. Quantification of Western immunoblots show that IRß is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.

3.
Arterioscler Thromb Vasc Biol ; 40(7): 1635-1650, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434410

RESUMEN

OBJECTIVE: Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS: Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.


Asunto(s)
Plaquetas/metabolismo , Endocitosis , Infecciones por VIH/sangre , VIH-1/patogenicidad , Activación Plaquetaria , Trombocitopenia/sangre , Receptores Toll-Like/sangre , Virión , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/sangre , Factores de Ribosilacion-ADP/genética , Animales , Antirretrovirales/uso terapéutico , Plaquetas/virología , Agregación Celular , Células Cultivadas , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Quinasa I-kappa B/sangre , Quinasa I-kappa B/genética , Leucocitos/metabolismo , Leucocitos/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/sangre , Factor 88 de Diferenciación Mieloide/genética , Factor Plaquetario 4/sangre , Factor Plaquetario 4/genética , Trombocitopenia/diagnóstico , Trombocitopenia/virología , Receptores Toll-Like/deficiencia , Receptores Toll-Like/genética , Proteína 3 de Membrana Asociada a Vesículas/sangre , Proteína 3 de Membrana Asociada a Vesículas/genética
4.
J Neuroinflammation ; 12: 41, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25885682

RESUMEN

BACKGROUND: Microglia are considered the resident immune cells of the central nervous system (CNS). In response to harmful stimuli, an inflammatory reaction ensues in which microglia are activated in a sequenced spectrum of pro- and antiinflammatory phenotypes that are akin to the well-characterized polarization states of peripheral macrophages. A "classically" activated M1 phenotype is known to eradicate toxicity. The transition to an "alternatively" activated M2 phenotype encompasses neuroprotection and repair. In recent years, inflammation has been considered an accompanying pathology in response to the accumulation of extracellular amyloid-ß (Aß) in Alzheimer's disease (AD). This study aimed to drive an M2a-biased immune phenotype with IL-4 in vitro and in vivo and to determine the subsequent effects on microglial activation and Aß pathology. METHODS: In vitro, exogenous IL-4 was applied to BV2 microglial cell cultures to evaluate the temporal progression of microglial responses. In vivo, intracranial injections of an adeno-associate-virus (AAV) viral vector were performed to assess long-term expression of IL-4 in the frontal cortex and hippocampus of Aß-depositing, APP/PS1 transgenic mice. Quantitative real-time PCR was used to assess the fold change in expression of biomarkers representing each of the microglial phenotypes in both the animal tissue and the BV2 cells. ELISAs quantified IL-4 expression and Aß levels. Histological staining permitted quantification of microglial and astrocytic activity. RESULTS: Both in vitro and in vivo models showed an enhanced M2a phenotype, and the in vivo model revealed a trend toward a decreased trend in Aß deposition. CONCLUSIONS: In summary, this study offers insight into the therapeutic potential of microglial immune response in AD.


Asunto(s)
Encefalitis , Interleucina-4/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/genética , Encefalitis/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Mutación/genética , Presenilina-1/genética , Factores de Tiempo , Transducción Genética
5.
J Neuroinflammation ; 11: 127, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25062954

RESUMEN

BACKGROUND: The polarization to different neuroinflammatory phenotypes has been described in early Alzheimer's disease, yet the impact of these phenotypes on amyloid-beta (Aß) pathology remains unknown. Short-term studies show that induction of an M1 neuroinflammatory phenotype reduces Aß, but long-term studies have not been performed that track the neuroinflammatory phenotype. METHODS: Wild-type and APP/PS1 transgenic mice aged 3 to 4 months received a bilateral intracranial injection of adeno-associated viral (AAV) vectors expressing IFNγ or green fluorescent protein in the frontal cortex and hippocampus. Mice were sacrificed 4 or 6 months post-injection. ELISA measurements were used for IFNγ protein levels and biochemical levels of Aß. The neuroinflammatory phenotype was determined through quantitative PCR. Microglia, astrocytes, and Aß levels were assessed with immunohistochemistry. RESULTS: AAV expressing IFNγ induced an M1 neuroinflammatory phenotype at 4 months and a mixed phenotype along with an increase in Aß at 6 months. Microglial staining was increased at 6 months and astrocyte staining was decreased at 4 and 6 months in mice receiving AAV expressing IFNγ. CONCLUSIONS: Expression of IFNγ through AAV successfully induced an M1 phenotype at 4 months that transitioned to a mixed phenotype by 6 months. This transition also appeared with an increase in amyloid burden suggesting that a mixed phenotype, or enhanced expression of M2a and M2c markers, could contribute to increasing amyloid burden and disease progression.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encefalitis/genética , Encefalitis/metabolismo , Regulación de la Expresión Génica/genética , Presenilina-1/genética , Factores de Edad , Análisis de Varianza , Animales , Dependovirus/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
6.
J Biol Chem ; 287(16): 13457-64, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22389505

RESUMEN

Recent studies suggest that sphingolipid metabolism is altered during type 2 diabetes. Increased levels of the sphingolipid ceramide are associated with insulin resistance. However, a role for sphingolipids in pancreatic beta cell function, or insulin production, and release remains to be established. Our studies in MIN6 cells and mouse pancreatic islets demonstrate that glucose stimulates an intracellular rise in the sphingolipid, sphingosine 1-phosphate (S1P), whereas the levels of ceramide and sphingomyelin remain unchanged. The increase in S1P levels by glucose is due to activation of sphingosine kinase 2 (SphK2). Interestingly, rises in S1P correlate with increased glucose-stimulated insulin secretion (GSIS). Decreasing S1P levels by treatment of MIN6 cells or primary islets with the sphingosine kinase inhibitor reduces GSIS. Moreover, knockdown of SphK2 alone results in decreased GSIS, whereas knockdown of the S1P phosphatase, Sgpp1, leads to a rise in GSIS. Treatment of mice with the sphingosine kinase inhibitor impairs glucose disposal due to decreased plasma insulin levels. Altogether, our data suggest that glucose activates SphK2 in pancreatic beta cells leading to a rise in S1P levels, which is important for GSIS.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Línea Celular Tumoral , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Inyecciones Intraperitoneales , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma , Lisofosfolípidos/farmacología , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Interferente Pequeño/farmacología , Esfingosina/metabolismo , Esfingosina/farmacología
7.
Arch Biochem Biophys ; 480(2): 138-42, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18948074

RESUMEN

MafA is a basic leucine zipper transcription factor expressed within the beta cells of the pancreas and is required to maintain normal glucose homeostasis as it is involved in various aspects of beta cell biology. MafA protein levels are known to increase in response to high glucose through mechanisms that have yet to be fully characterized. We investigated whether discrete intracellular signaling events control mafA expression. We found that the general kinase inhibitor staurosporine induces mafA expression without altering the stability of the protein. Inhibition of the MAP-kinase JNK mimics the effects of staurosporine on the expression of mafA. Calmodulin kinase and calcium signaling are also important in stimulating mafA expression by high glucose. However, staurosporine, JNK, and calmodulin kinase have different effects on the induction of insulin expression. These data reveal that MafA levels are tightly controlled by the coordinated action of multiple kinase pathways.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/biosíntesis , Factores de Transcripción Maf de Gran Tamaño/fisiología , Calcio/metabolismo , Línea Celular , Diabetes Mellitus/metabolismo , Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , Modelos Biológicos , Transducción de Señal , Estaurosporina/farmacología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...