Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Limnol Oceanogr ; 68(9): 2141-2152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38516532

RESUMEN

Dihydrogen (H2) is an important intermediate in anaerobic microbial processes, and concentrations are tightly controlled by thermodynamic limits of consumption and production. However, recent studies reported unusual H2 accumulation in permeable marine sediments under anoxic conditions, suggesting decoupling of fermentation and sulfate reduction, the dominant respiratory process in anoxic permeable marine sediments. Yet, the extent, prevalence and potential triggers for such H2 accumulation and decoupling remain unknown. We surveyed H2 concentrations in situ at different settings of permeable sand and found that H2 accumulation was only observed during a coral spawning event on the Great Barrier Reef. A flume experiment with organic matter addition to the water column showed a rapid accumulation of hydrogen within the sediment. Laboratory experiments were used to explore the effect of oxygen exposure, physical disturbance and organic matter inputs on H2 accumulation. Oxygen exposure had little effect on H2 accumulation in permeable sediments suggesting both fermenters and sulfate reducers survive and rapidly resume activity after exposure to oxygen. Mild physical disturbance mimicking sediment resuspension had little effect on H2 accumulation; however, vigorous shaking led to a transient accumulation of H2 and release of dissolved organic carbon suggesting mechanical disturbance and cell destruction led to organic matter release and transient decoupling of fermenters and sulfate reducers. In summary, the highly dynamic nature of permeable sediments and its microbial community allows for rapid but transient decoupling of fermentation and respiration after a C pulse, leading to high H2 levels in the sediment.

2.
Open Res Eur ; 1: 105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37767459

RESUMEN

A new system was developed for measuring sulfur isotopes δ 33S and δ 34S from atmospheric carbonyl sulfide (COS) on small air samples of several liters, using pre-concentration and gas chromatography - isotope ratio mass spectrometry (GC-IRMS). Measurements of COS isotopes provide a tool for quantifying the COS budget, which will help towards better understanding climate feedback mechanisms. For a 4 liter sample at ambient COS mixing ratio, ~500 parts per trillion (ppt), we obtain a reproducibility error of 2.1 ‰ for δ 33S and 0.4 ‰ for δ 34S. After applying corrections, the uncertainty for an individual ambient air sample measurement is 2.5 ‰ for δ 33S and 0.9 ‰ for δ 34S. The ability to measure small samples allows application to a global-scale sampling program with limited logistical effort. To illustrate the application of this newly developed system, we present a timeseries of ambient air measurements, during the fall and winter of 2020 and 2021 in Utrecht, the Netherlands. The observed background values were δ 33S = 1.0 ± 3.4 ‰ and δ 34S = 15.5 ± 0.8 ‰ (VCDT). The maximum observed COS mixing ratios was only 620 ppt. This, in combination with the relatively high δ 34S suggests that the Netherlands receives little COS-containing anthropogenic emissions. We observed a change in COS mixing ratio and δ 34S with different air mass origin, as modelled with HYSPLIT backward trajectory analyses. An increase of 40 ppt in mean COS mixing ratio was observed between fall and winter, which is consistent with the expected seasonal cycle in the Netherlands. Additionally, we present the results of samples from a highway tunnel to characterize vehicle COS emissions and isotopic composition. The vehicle emissions were small, with COS/CO 2 being 0.4 ppt/ppm; the isotopic signatures are depleted relatively to background atmospheric COS.

3.
Rapid Commun Mass Spectrom ; 33(3): 239-251, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30378194

RESUMEN

RATIONALE: Molecular hydrogen (H2 ) is an important gas for atmospheric chemistry, and an indirect greenhouse gas due to its reaction with OH. The isotopic composition of H2 (δD) has been used to investigate its atmospheric budget; here we add a new observable, the clumped isotopic signature ΔDD, to the tools that can be used to study the global cycle of H2 . METHODS: A method for determining ΔDD in H2 was developed using the high-resolution MAT 253-Ultra isotope ratio mass spectrometer (Thermo Fisher). The HH, HD and DD abundances are quantified at medium resolution (M/ΔM ≈ 6000), which is sufficient for HD+ and DD+ to be distinguished from H3 + and H2 D+ , respectively. The method involves sequential measurement of isotopologues, and DD is measured using an ion counter. For verification, catalytic ΔDD equilibration experiments were performed at temperatures of up to 850°C. RESULTS: The typical precision obtained for ΔDD is 2-6‰, close to the theoretical counting statistics limit, and adequate for detecting the expected natural variations. Compatibility and medium-term reproducibility are consistent with the precision values. The method was validated using temperature equilibration experiments, which showed a dependence of ΔDD on temperature as expected form theoretical calculations. CONCLUSIONS: We have established a method for determining ΔDD in H2 at natural isotopic abundances, with a precision that is adequate for observing the expected variations in atmospheric and other natural H2 . This method opens the road to new research on the natural H2 cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA