Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 32, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263062

RESUMEN

BACKGROUND: Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS: Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS: We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.


Asunto(s)
Archaea , Evolución Biológica , Animales , Filogenia , Metano , Rumiantes
2.
Nat Ecol Evol ; 8(1): 32-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957315

RESUMEN

Predicting the behaviour of complex microbial communities is challenging. However, this is essential for complex biotechnological processes such as those in biological wastewater treatment plants (BWWTPs), which require sustainable operation. Here we summarize 14 months of longitudinal meta-omics data from a BWWTP anaerobic tank into 17 temporal signals, explaining 91.1% of the temporal variance, and link those signals to ecological events within the community. We forecast the signals over the subsequent five years and use 21 extra samples collected at defined time intervals for testing and validation. Our forecasts are correct for six signals and hint on phenomena such as predation cycles. Using all the 17 forecasts and the environmental variables, we predict gene abundance and expression, with a coefficient of determination ≥0.87 for the subsequent three years. Our study demonstrates the ability to forecast the dynamics of open microbial ecosystems using interactions between community cycles and environmental parameters.


Asunto(s)
Microbiota , Aguas Residuales
3.
Nat Commun ; 14(1): 8171, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071207

RESUMEN

The bark is the outermost defense of trees against microbial attack, largely thanks to toxicity and prevalence of extractive compounds. Nevertheless, bark decomposes in nature, though by which species and mechanisms remains unknown. Here, we have followed the development of microbial enrichments growing on spruce bark over six months, by monitoring both chemical changes in the material and performing community and metagenomic analyses. Carbohydrate metabolism was unexpectedly limited, and instead a key activity was metabolism of extractives. Resin acid degradation was principally linked to community diversification with specific bacteria revealed to dominate the process. Metagenome-guided isolation facilitated the recovery of the dominant enrichment strain in pure culture, which represents a new species (Pseudomonas abieticivorans sp. nov.), that can grow on resin acids as a sole carbon source. Our results illuminate key stages in degradation of an abundant renewable resource, and how defensive extractive compounds have major roles in shaping microbiomes.


Asunto(s)
Microbiota , Picea , Corteza de la Planta , Metagenoma , Bacterias/genética
4.
Environ Microbiome ; 18(1): 56, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420292

RESUMEN

BACKGROUND: 'Omics methods have empowered scientists to tackle the complexity of microbial communities on a scale not attainable before. Individually, omics analyses can provide great insight; while combined as "meta-omics", they enhance the understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize environmental nutrients. Here we present three integrative meta-omics workflows, developed in Galaxy, for enhanced analysis and integration of metagenomics, metatranscriptomics, and metaproteomics, combined with our newly developed web-application, ViMO (Visualizer for Meta-Omics) to analyse metabolisms in complex microbial communities. RESULTS: In this study, we applied the workflows on a highly efficient cellulose-degrading minimal consortium enriched from a biogas reactor to analyse the key roles of uncultured microorganisms in complex biomass degradation processes. Metagenomic analysis recovered metagenome-assembled genomes (MAGs) for several constituent populations including Hungateiclostridium thermocellum, Thermoclostridium stercorarium and multiple heterogenic strains affiliated to Coprothermobacter proteolyticus. The metagenomics workflow was developed as two modules, one standard, and one optimized for improving the MAG quality in complex samples by implementing a combination of single- and co-assembly, and dereplication after binning. The exploration of the active pathways within the recovered MAGs can be visualized in ViMO, which also provides an overview of the MAG taxonomy and quality (contamination and completeness), and information about carbohydrate-active enzymes (CAZymes), as well as KEGG annotations and pathways, with counts and abundances at both mRNA and protein level. To achieve this, the metatranscriptomic reads and metaproteomic mass-spectrometry spectra are mapped onto predicted genes from the metagenome to analyse the functional potential of MAGs, as well as the actual expressed proteins and functions of the microbiome, all visualized in ViMO. CONCLUSION: Our three workflows for integrative meta-omics in combination with ViMO presents a progression in the analysis of 'omics data, particularly within Galaxy, but also beyond. The optimized metagenomics workflow allows for detailed reconstruction of microbial community consisting of MAGs with high quality, and thus improves analyses of the metabolism of the microbiome, using the metatranscriptomics and metaproteomics workflows.

5.
ISME J ; 17(7): 1128-1140, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169869

RESUMEN

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Asunto(s)
Cilióforos , Rumen , Animales , Bovinos , Rumen/microbiología , Proteómica , Cilióforos/genética , Cilióforos/metabolismo , Rumiantes/metabolismo , Almidón/metabolismo , Metano/metabolismo
7.
Microbiome ; 10(1): 222, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503572

RESUMEN

BACKGROUND: The gastrointestinal tract (GIT) microbiome of ruminants and its metabolic repercussions vastly influence host metabolism and growth. However, a complete understanding of the bidirectional interactions that occur across the host-microbiome axis remains elusive, particularly during the critical development stages at early life. Here, we present an integrative multi-omics approach that simultaneously resolved the taxonomic and functional attributes of microbiota from five GIT regions as well as the metabolic features of the liver, muscle, urine, and serum in sika deer (Cervus nippon) across three key early life stages. RESULTS: Within the host, analysis of metabolites over time in serum, urine, and muscle (longissimus lumborum) showed that changes in the fatty acid profile were concurrent with gains in body weight. Additional host transcriptomic and metabolomic analysis revealed that fatty acid ß-oxidation and metabolism of tryptophan and branched chain amino acids play important roles in regulating hepatic metabolism. Across the varying regions of the GIT, we demonstrated that a complex and variable community of bacteria, viruses, and archaea colonized the GIT soon after birth, whereas microbial succession was driven by the cooperative networks of hub populations. Furthermore, GIT volatile fatty acid concentrations were marked by increased microbial metabolic pathway abundances linked to mannose (rumen) and amino acids (colon) metabolism. Significant functional shifts were also revealed across varying GIT tissues, which were dominated by host fatty acid metabolism associated with reactive oxygen species in the rumen epithelium, and the intensive immune response in both small and large intestine. Finally, we reveal a possible contributing role of necroptosis and apoptosis in enhancing ileum and colon epithelium development, respectively. CONCLUSIONS: Our findings provide a comprehensive view for the involved mechanisms in the context of GIT microbiome and ruminant metabolic growth at early life. Video Abstract.


Asunto(s)
Ciervos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Multiómica , Ciervos/microbiología , Rumen/microbiología , Ácidos Grasos Volátiles
8.
Nat Microbiol ; 7(4): 556-569, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365790

RESUMEN

Processed foods often include food additives such as xanthan gum, a complex polysaccharide with unique rheological properties, that has established widespread use as a stabilizer and thickening agent. Xanthan gum's chemical structure is distinct from those of host and dietary polysaccharides that are more commonly expected to transit the gastrointestinal tract, and little is known about its direct interaction with the gut microbiota, which plays a central role in digestion of other dietary fibre polysaccharides. Here we show that the ability to digest xanthan gum is common in human gut microbiomes from industrialized countries and appears contingent on a single uncultured bacterium in the family Ruminococcaceae. Our data reveal that this primary degrader cleaves the xanthan gum backbone before processing the released oligosaccharides using additional enzymes. Some individuals harbour Bacteroides intestinalis that is incapable of consuming polymeric xanthan gum but grows on oligosaccharide products generated by the Ruminococcaceae. Feeding xanthan gum to germfree mice colonized with a human microbiota containing the uncultured Ruminococcaceae supports the idea that the additive xanthan gum can drive expansion of the primary degrader Ruminococcaceae, along with exogenously introduced B. intestinalis. Our work demonstrates the existence of a potential xanthan gum food chain involving at least two members of different phyla of gut bacteria and provides an initial framework for understanding how widespread consumption of a recently introduced food additive influences human microbiomes.


Asunto(s)
Microbioma Gastrointestinal , Animales , Fibras de la Dieta , Aditivos Alimentarios , Humanos , Ratones , Polisacáridos Bacterianos
9.
Curr Opin Microbiol ; 67: 102143, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35338908

RESUMEN

Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat. Using key examples, we emphasize how increasing understanding of glycan processing by gut microbiomes can provide critical insights to assist 'microbiome reprogramming', a growing field that seeks to leverage diet to improve animal growth and host health.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Tracto Gastrointestinal/microbiología , Polisacáridos
10.
Annu Rev Anim Biosci ; 10: 177-201, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34941382

RESUMEN

Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discussthe link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Crecimiento y Desarrollo , Microbiota/genética
11.
ISME J ; 16(2): 580-590, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34489539

RESUMEN

Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


Asunto(s)
Biocombustibles , Óxido Nitroso , Agricultura , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , Óxido Nitroso/metabolismo , Suelo , Microbiología del Suelo
12.
Microbiome ; 9(1): 243, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930457

RESUMEN

Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this field. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Biología Computacional , Microbioma Gastrointestinal/genética , Genómica , Microbiota/genética , Proteómica/métodos
13.
F1000Res ; 10: 103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484688

RESUMEN

The Earth Microbiome Project (EMP) aided in understanding the role of microbial communities and the influence of collective genetic material (the 'microbiome') and microbial diversity patterns across the habitats of our planet. With the evolution of new sequencing technologies, researchers can now investigate the microbiome and map its influence on the environment and human health. Advances in bioinformatics methods for next-generation sequencing (NGS) data analysis have helped researchers to gain an in-depth knowledge about the taxonomic and genetic composition of microbial communities. Metagenomic-based methods have been the most commonly used approaches for microbiome analysis; however, it primarily extracts information about taxonomic composition and genetic potential of the microbiome under study, lacking quantification of the gene products (RNA and proteins). On the other hand, metatranscriptomics, the study of a microbial community's RNA expression, can reveal the dynamic gene expression of individual microbial populations and the community as a whole, ultimately providing information about the active pathways in the microbiome.  In order to address the analysis of NGS data, the ASaiM analysis framework was previously developed and made available via the Galaxy platform. Although developed for both metagenomics and metatranscriptomics, the original publication demonstrated the use of ASaiM only for metagenomics, while thorough testing for metatranscriptomics data was lacking.  In the current study, we have focused on validating and optimizing the tools within ASaiM for metatranscriptomics data. As a result, we deliver a robust workflow that will enable researchers to understand dynamic functional response of the microbiome in a wide variety of metatranscriptomics studies. This improved and optimized ASaiM-metatranscriptomics (ASaiM-MT) workflow is publicly available via the ASaiM framework, documented and supported with training material so that users can interrogate and characterize metatranscriptomic data, as part of larger meta-omic studies of microbiomes.


Asunto(s)
Metagenómica , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Microbiota/genética , Flujo de Trabajo
14.
mBio ; 12(3): e0362820, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34061597

RESUMEN

ß-Mannans are hemicelluloses that are abundant in modern diets as components in seed endosperms and common additives in processed food. Currently, the collective understanding of ß-mannan saccharification in the human colon is limited to a few keystone species, which presumably liberate low-molecular-weight mannooligosaccharide fragments that become directly available to the surrounding microbial community. Here, we show that a dominant butyrate producer in the human gut, Faecalibacterium prausnitzii, is able to acquire and degrade various ß-mannooligosaccharides (ß-MOS), which are derived by the primary mannanolytic activity of neighboring gut microbiota. Detailed biochemical analyses of selected protein components from their two ß-MOS utilization loci (F. prausnitzii ß-MOS utilization loci [FpMULs]) supported a concerted model whereby the imported ß-MOS are stepwise disassembled intracellularly by highly adapted enzymes. Coculturing experiments of F. prausnitzii with the primary degraders Bacteroides ovatus and Roseburia intestinalis on polymeric ß-mannan resulted in syntrophic growth, thus confirming the high efficiency of the FpMULs' uptake system. Genomic comparison with human F. prausnitzii strains and analyses of 2,441 public human metagenomes revealed that FpMULs are highly conserved and distributed worldwide. Together, our results provide a significant advance in the knowledge of ß-mannan metabolism and the degree to which its degradation is mediated by cross-feeding interactions between prominent beneficial microbes in the human gut. IMPORTANCE Commensal butyrate-producing bacteria belonging to the Firmicutes phylum are abundant in the human gut and are crucial for maintaining health. Currently, insight is lacking into how they target otherwise indigestible dietary fibers and into the trophic interactions they establish with other glycan degraders in the competitive gut environment. By combining cultivation, genomic, and detailed biochemical analyses, this work reveals the mechanism enabling F. prausnitzii, as a model Ruminococcaceae within Firmicutes, to cross-feed and access ß-mannan-derived oligosaccharides released in the gut ecosystem by the action of primary degraders. A comprehensive survey of human gut metagenomes shows that FpMULs are ubiquitous in human populations globally, highlighting the importance of microbial metabolism of ß-mannans/ß-MOS as a common dietary component. Our findings provide a mechanistic understanding of the ß-MOS utilization capability by F. prausnitzii that may be exploited to select dietary formulations specifically boosting this beneficial symbiont, and thus butyrate production, in the gut.


Asunto(s)
Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/metabolismo , Microbioma Gastrointestinal/genética , Mananos/metabolismo , Oligosacáridos/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Colon/microbiología , Dieta , Faecalibacterium prausnitzii/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Humanos , Mananos/clasificación , Metagenómica
15.
Microbiome ; 9(1): 137, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118976

RESUMEN

BACKGROUND: Gastrointestinal tract (GIT) microbiomes in ruminants play major roles in host health and thus animal production. However, we lack an integrated understanding of microbial community structure and function as prior studies. are predominantly biased towards the rumen. Therefore, to acquire a microbiota inventory of the discrete GIT compartments, In this study, we used shotgun metagenomics to profile the microbiota of 370 samples that represent 10 GIT regions of seven ruminant species. RESULTS: Our analyses reconstructed a GIT microbial reference catalog with > 154 million nonredundant genes and identified 8745 uncultured candidate species from over 10,000 metagenome-assembled genomes. The integrated gene catalog across the GIT regions demonstrates spatial associations between the microbiome and physiological adaptations, and 8745 newly characterized genomes substantially expand the genomic landscape of ruminant microbiota, particularly those from the lower gut. This substantially expands the previously known set of endogenous microbial diversity and the taxonomic classification rate of the GIT microbiome. These candidate species encode hundreds of enzymes and novel biosynthetic gene clusters that improve our understanding concerning methane production and feed efficiency in ruminants. Overall, this study expands the characterization of the ruminant GIT microbiota at unprecedented spatial resolution and offers clues for improving ruminant livestock production in the future. CONCLUSIONS: Having access to a comprehensive gene catalog and collections of microbial genomes provides the ability to perform efficiently genome-based analysis to achieve a detailed classification of GIT microbial ecosystem composition. Our study will bring unprecedented power in future association studies to investigate the impact of the GIT microbiota in ruminant health and production. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Filogenia , Rumiantes
16.
Environ Microbiol Rep ; 13(5): 559-581, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34036727

RESUMEN

The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacteroidetes , Transporte Biológico , Humanos , Polisacáridos/metabolismo
17.
Methods ; 186: 42-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32758682

RESUMEN

The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex plant material into nutrients for host metabolism, a process which also produces other by-products, such as methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as metaproteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples, precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence database that enables precise protein identification and quantification. This review focuses on the application of rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its metabolic functions. We present and discuss current methods in sample handling, protein extraction and data analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metaproteomics for accurate reconstruction of active microbial populations in the rumen.


Asunto(s)
Crianza de Animales Domésticos/métodos , Microbioma Gastrointestinal/fisiología , Metagenómica/métodos , Proteómica/métodos , Rumen/microbiología , Animales , Interacciones Microbiota-Huesped/fisiología , Ganado/microbiología , Ganado/fisiología , Metagenoma , Sitios de Carácter Cuantitativo/fisiología , Rumiantes/microbiología , Rumiantes/fisiología
18.
ISME J ; 15(2): 421-434, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929206

RESUMEN

The rumen harbors a complex microbial mixture of archaea, bacteria, protozoa, and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 h in nylon bags within the rumen of cannulated dairy cows. Across a gene catalog covering anaerobic rumen bacteria, fungi and viruses, a significant portion of the detected proteins originated from fungal populations. Intriguingly, the carbohydrate-active enzyme (CAZyme) profile suggested a domain-specific functional specialization, with bacterial populations primarily engaged in the degradation of hemicelluloses, whereas fungi were inferred to target recalcitrant cellulose structures via the detection of a number of endo- and exo-acting enzymes belonging to the glycoside hydrolase (GH) family 5, 6, 8, and 48. Notably, members of the GH48 family were amongst the highest abundant CAZymes and detected representatives from this family also included dockerin domains that are associated with fungal cellulosomes. A eukaryote-selected metatranscriptome further reinforced the contribution of uncultured fungi in the ruminal degradation of recalcitrant fibers. These findings elucidate the intricate networks of in situ recalcitrant fiber deconstruction, and importantly, suggest that the anaerobic rumen fungi contribute a specific set of CAZymes that complement the enzyme repertoire provided by the specialized plant cell wall degrading rumen bacteria.


Asunto(s)
Hongos/metabolismo , Proteoma , Rumen/microbiología , Anaerobiosis , Animales , Bovinos , Femenino , Hongos/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteoma/metabolismo , Rumen/metabolismo
19.
Nat Commun ; 11(1): 5773, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188211

RESUMEN

Beneficial modulation of the gut microbiome has high-impact implications not only in humans, but also in livestock that sustain our current societal needs. In this context, we have tailored an acetylated galactoglucomannan (AcGGM) fibre to match unique enzymatic capabilities of Roseburia and Faecalibacterium species, both renowned butyrate-producing gut commensals. Here, we test the accuracy of AcGGM within the complex endogenous gut microbiome of pigs, wherein we resolve 355 metagenome-assembled genomes together with quantitative metaproteomes. In AcGGM-fed pigs, both target populations differentially express AcGGM-specific polysaccharide utilization loci, including novel, mannan-specific esterases that are critical to its deconstruction. However, AcGGM-inclusion also manifests a "butterfly effect", whereby numerous metabolic changes and interdependent cross-feeding pathways occur in neighboring non-mannanolytic populations that produce short-chain fatty acids. Our findings show how intricate structural features and acetylation patterns of dietary fibre can be customized to specific bacterial populations, with potential to create greater modulatory effects at large.


Asunto(s)
Fibras de la Dieta/farmacología , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Metabolismo Secundario , Acetilación/efectos de los fármacos , Animales , Butiratos/metabolismo , Ciego/metabolismo , Dieta , Conducta Alimentaria/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Genoma , Masculino , Mananos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metagenómica , Análisis de Componente Principal , Proteoma/metabolismo , ARN Ribosómico 16S/genética , Metabolismo Secundario/efectos de los fármacos , Porcinos , Madera/química
20.
Sci Rep ; 10(1): 13775, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792608

RESUMEN

Chitin is one of the most abundant renewable organic materials found on earth. The chitin utilization locus in Flavobacterium johnsoniae, which encodes necessary proteins for complete enzymatic depolymerization of crystalline chitin, has recently been characterized but no detailed structural information on the enzymes was provided. Here we present protein structures of the F. johnsoniae chitobiase (FjGH20) and chitinase B (FjChiB). FjGH20 is a multi-domain enzyme with a helical domain not before observed in other chitobiases and a domain organization reminiscent of GH84 (ß-N-acetylglucosaminidase) family members. The structure of FjChiB reveals that the protein lacks loops and regions associated with exo-acting activity in other chitinases and instead has a more solvent accessible substrate binding cleft, which is consistent with its endo-chitinase activity. Additionally, small angle X-ray scattering data were collected for the internal 70 kDa region that connects the N- and C-terminal chitinase domains of the unique 158 kDa multi-domain chitinase A (FjChiA). The resulting model of the molecular envelope supports bioinformatic predictions of the region comprising six domains, each with similarities to either Fn3-like or Ig-like domains. Taken together, the results provide insights into chitin utilization by F. johnsoniae and reveal structural diversity in bacterial chitin metabolism.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Dominio Catalítico/genética , Quitina/metabolismo , Quitinasas/metabolismo , Flavobacterium/enzimología , Acetilglucosaminidasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quitinasas/genética , Cristalografía por Rayos X , Flavobacterium/genética , Flavobacterium/metabolismo , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...