Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 1048117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483541

RESUMEN

Human FACT (FACT) is a multifunctional histone chaperone involved in transcription, replication and DNA repair. Curaxins are anticancer compounds that induce FACT-dependent nucleosome unfolding and trapping of FACT in the chromatin of cancer cells (c-trapping) through an unknown molecular mechanism. Here, we analyzed the effects of curaxin CBL0137 on nucleosome unfolding by FACT using spFRET and electron microscopy. By itself, FACT adopted multiple conformations, including a novel, compact, four-domain state in which the previously unresolved NTD of the SPT16 subunit of FACT was localized, apparently stabilizing a compact configuration. Multiple, primarily open conformations of FACT-nucleosome complexes were observed during curaxin-supported nucleosome unfolding. The obtained models of intermediates suggest "decision points" in the unfolding/folding pathway where FACT can either promote disassembly or assembly of nucleosomes, with the outcome possibly being influenced by additional factors. The data suggest novel mechanisms of nucleosome unfolding by FACT and c-trapping by curaxins.

2.
Appl Microbiol Biotechnol ; 102(22): 9621-9633, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30178202

RESUMEN

Substrate and reaction promiscuity is a remarkable property of some enzymes and facilitates the adaptation to new metabolic demands in the evolutionary process. Substrate promiscuity is also a basis for protein engineering for biocatalysis. However, molecular principles of enzyme promiscuity are not well understood. Even for the widely studied PLP-dependent transaminases of class III, the reliable prediction of the biocatalytically important amine transaminase activity is still difficult if the desired activity is unrelated to the natural activity. Here, we show that 7,8-diaminopelargonic acid transaminase (synthase), previously considered to be highly specific, is able to convert (S)-(-)-1-phenylethylamine and a number of aldehydes and diketones. We were able to characterize the (S)-amine transaminase activity of 7,8-diaminopelargonic acid transaminase from Psychrobacter cryohalolentis (Pcryo361) and analyzed the three-dimensional structure of the enzyme. New substrate specificity for α-diketones was observed, though only a weak activity towards pyruvate was found. We examined the organization of the active site and binding modes of S-adenosyl-L-methionine and (S)-(-)-1-phenylethylamine using X-ray analysis and molecular docking. We suggest that the Pcryo361 affinity towards (S)-(-)-1-phenylethylamine arises from the recognition of the hydrophobic parts of the specific substrates, S-adenosyl-L-methionine and 7-keto-8-aminopelargonic acid, and from the flexibility of the active site. Our results support the observation that the conversion of amines is a promiscuous activity of many transaminases of class III and is independent from their natural function. The analysis of amine transaminase activity from among various transaminases will help to make the sequence-function prediction for biocatalysis more reliable.


Asunto(s)
Aldehídos/metabolismo , Proteínas Bacterianas/química , Cetonas/metabolismo , Fenetilaminas/metabolismo , Psychrobacter/enzimología , Transaminasas/química , Aldehídos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Cetonas/química , Cinética , Simulación del Acoplamiento Molecular , Fenetilaminas/química , Psychrobacter/química , Psychrobacter/genética , Especificidad por Sustrato , Transaminasas/metabolismo
3.
Biochimie ; 118: 82-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26300061

RESUMEN

The short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus (TsAdh319) exhibits adaptation to different kinds of stress: high temperature, high salinity, and the presence of organic solvents and denaturants. Previously a comparison of TsAdh319 with close structural homologs revealed an abnormally large number of charged residues on the surface of TsAdh319 tetramer. We further focused on the analysis of hydrogen bonding of TsAdh319 and its structural homologs from thermophilic and mesophilic organisms as a structural factor of adaptation to extreme environment. The calculation and analysis of the dynamics of hydrogen bonds of different kind were performed. In particular, the intramolecular hydrogen bonds of different kind according to their location and the type of a.a. residues involved in the bond were analyzed. TsAdh319 showed the greatest contribution of charged residues to the formation of surface hydrogen bonds, inner hydrogen bonding, and the bonds between different subunits compared to its structural homologs. Molecular dynamics simulations revealed that, of three enzyme molecules analyzed, TsAdh319 shows the least change in the number of hydrogen bonds of different kinds upon a temperature shift from 27 to 85 °C. The greatest changes were observed for a homologous enzyme from a mesophilic host. Only guanidine hydrochloride being a charged agent was able to deactivate TsAdh319. We suggest that the percentage of charged residues plays a key role in the resistance of TsAdh319 to environmental stress. The analysis shows that salt bridges in TsAdh319 serve as a universal instrument of stabilization under different extreme conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Arqueales/química , Enlace de Hidrógeno , Oxidorreductasas/química , Thermococcus/química , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Conformación Proteica , Thermococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...