Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
BMC Med Genet ; 20(Suppl 1): 52, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967137

RESUMEN

BACKGROUND: CpG island methylator phenotype (CIMP) is found in 15-20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, "Metabolic") subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. METHODS: We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). RESULTS: Upregulation of multiple genes involved in glycolysis and related processes (ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. CONCLUSIONS: We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Islas de CpG/genética , Metilación de ADN , Metabolismo Energético/genética , Anciano , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Federación de Rusia
2.
BMC Genomics ; 19(Suppl 3): 113, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29504907

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS: Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS: Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Hexoquinasa/genética , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba
3.
BMC Genet ; 17(Suppl 3): 156, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28105937

RESUMEN

BACKGROUND: The switch from oxidative phosphorylation to glycolysis in proliferating cancer cells, even under aerobic conditions, has been shown first in 1926 by Otto Warburg. Today this phenomenon is known as the "Warburg effect" and recognized as a hallmark of cancer. The metabolic shift to glycolysis is associated with the alterations in signaling pathways involved in energy metabolism, including glucose uptake and fermentation, and regulation of mitochondrial functions. Hexokinases (HKs), which catalyze the first step of glycolysis, have been identified to play a role in tumorigenesis of human colorectal cancer (CRC) and melanoma. However, the mechanism of action of HKs in the promotion of tumor growth remains unclear. RESULTS: The purpose of the present study was to investigate the effect of silencing of hexokinase genes (HK1, HK2, and HK3) in colorectal cancer (HT-29, SW 480, HCT-15, RKO, and HCT 116) and melanoma (MDA-MB-435S and SK-MEL-28) cell lines using short hairpin RNA (shRNA) lentiviral vectors. shRNA lentiviral plasmid vectors pLSLP-HK1, pLSLP-HK2, and pLSLP-HK3 were constructed and then transfected separately or co-transfected into the cells. HK2 inactivation was associated with increased expression of HK1 in colorectal cancer cell lines pointing to the compensation effect. Simultaneous attenuation of HK1 and HK2 levels led to decreased cell viability. Co-transfection with shRNA vectors against HK1, HK2, and HK3 mRNAs resulted in a rapid cell death via apoptosis. CONCLUSIONS: We have demonstrated that simultaneous inactivation of HK1 and HK2 was sufficient to decrease proliferation and viability of melanoma and colorectal cancer cells. Our results suggest that HK1 and HK2 could be the key therapeutic targets for reducing aerobic glycolysis in examined cancers.


Asunto(s)
Hexoquinasa/genética , Lentivirus/genética , ARN Interferente Pequeño/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Interferencia de ARN , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...