Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(21): 10398-10413, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38741471

RESUMEN

This work presents for the first time the possibility of reducing and tuning the work function of field emission cathodes coated with metal oxides by changing the chemical composition of oxide coatings using an example of heat-treated CNT/NiO nanocomposite structures. These cathodes are formulated using carbon nanotube (CNT) arrays that are coated with ultrathin layers of nickel oxide (CNT/NiO) by atomic layer deposition (ALD). It was found that NiO at thicknesses of several nanometers grown on CNTs heat treated at a temperature of 350 °C can change its stoichiometric composition towards the formation of oxygen vacancies, since the Ni3+/Ni2+ peak area ratio increases and the position of the Ni-O peak binding energies shifts as observed using X-ray photoelectron spectroscopy (XPS). According to the secondary electron cut-off, the work function was 4.95 for pristine CNTs and it was found that the work function of deposited NiO layers on CNTs decreased after heat treatment. The decrease in work function occurs as a result of changes in the chemical composition of the oxide film. For the heat-treated CNT/NiO composites, the work function was 4.30 eV with a NiO layer thickness of 7.6 nm, which was less than that for a NiO thin film close to the stoichiometric composition, which had a work function of 4.48 eV. The field emission current-voltage characteristics showed that the fields for producing an emission current density of 10 µA cm-2 were 5.54 V µm-1 for pure nanotubes and 4.32 V µm-1 and 4.19 V µm-1 for NiO-coated CNTs (3.8 and 7.6 nm), respectively. The present study has shown that heat treatment of deposited thin NiO layers on field cathodes is a promising approach to improve the efficiency of field emission cathodes and is a new approach in vacuum nanoelectronics that allows tuning the work function of field emission cathodes.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727357

RESUMEN

This article presents, for the first time, a comparative analysis of the emission characteristics of large-area field-effect cathodes (LAFE) based on carbon nanotubes (CNTs) of various morphologies according to key parameters using a unique computerized technique. The work presents a description of a technology for creating various CNT arrays and their comprehensive structure characterization. All CNT arrays synthesized by the catalytic PECVD method on a silicon substrate showed a high degree of chemical purity under the presented technological conditions. In some cases, nanoisland films of Fe were used as a catalyst; in others, thin films of NiO were used, which were deposited on a silicon wafer by chemical vapor deposition (CVD) and atomic layer deposition (ALD), respectively. As a result of these studies, it turned out that an array with a thick CNT coating has good resistance to the action of strong electric fields, fairly good uniformity of distribution of emission centers, a fairly high selection current (2.88 mA/cm2 at 4.53 V/µm), and compliance with the normal current mode according to the "orthodox" test, which makes the morphology of such structures the most promising for further technological optimization of CNT-based cathodes for various practical applications.

3.
R Soc Open Sci ; 9(11): 220748, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465671

RESUMEN

This paper provides a demonstration-of-concept of a new methodology for comparing field electron emission (FE) theory and experiment. It uses the parameter κ in the mathematical equation I m = CV m κ exp[-B/V m] (where B and C are weakly varying or constants) that is taken to describe how measured current I m depends on measured voltage V m for electronically ideal FE systems (i.e. systems that (i) have constant configuration during voltage application and (ii) have I m(V m) given by the emission physics alone). Experimental parameter values (κ m) are used to compare two alternative FE theories, for which allowable (but different) κ ranges have been established. At present, contributions to the 'total theoretical κ' made by voltage dependence of notional emission area are not well known: simulations reported here provide data about four commonly investigated emitter shapes. The methodology is then applied to compare 1928/1929 Fowler-Nordheim (FN) FE theory and 1956 Murphy-Good (MG) FE theory. It is theoretically certain that the 1956 theory is 'better physics' than the 1928/1929 theory. As in previous attempts to reach known correct theoretical conclusions by experimentally based argument, the new methodology tends to favour MG FE theory, but is formally indecisive at this stage. Further progress needs better methods of establishing error limits and of measuring κ m.

4.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234591

RESUMEN

The paper presents a study of a large-area field emitter based on a composite of vertically aligned carbon nanotubes covered with a continuous and conformal layer of nickel oxide by the atomic layer deposition method. The arrays of carbon nanotubes were grown by direct current plasma-enhanced chemical vapor deposition on a pure Si substrate using a nickel oxide catalyst which was also deposited by atomic layer deposition. The emission characteristics of an array of pure vertically oriented carbon nanotubes with a structure identical in morphology, covered with a layer of thin nickel oxide, are compared using the data from a unique computerized field emission projector. The deposition of an oxide coating favorably affected the emission current fluctuations, reducing them from 40% to 15% for a pristine carbon nanotube and carbon nanotube/nickel oxide, respectively. However, the 7.5 nm nickel oxide layer coating leads to an increase in the turn-on field from 6.2 to 9.7 V/µm.

5.
Ultramicroscopy ; 233: 113462, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998119

RESUMEN

Blade-Like Field Emitters (BFE), as defined here, are emitters expanded in one direction, forming a sharp emitting edge instead of a sharp tip. These structures have four main advantages compared to their needle counterparts, i.e., they are mechanically firmer, are better electrical and thermal conductors, and provide a larger emission area. We focus on the optimization of the last of these. We evaluate the emission properties of three types of BFEs, which we short-named hSoC-blade, HCP-blade and Elli-blade. Each is built from the expansion of a hemisphere-on-a-cone (hSoC), hemisphere-on-a-cylindrical-post (HCP) and an ellipsoidal (Elli) emitter, respectively. The characteristics of the field enhancement factor, the local electrostatic field distribution on each blades' edges and their notional area (An) of emission as a function of the expansion length are described. Finally, we point out how to improve the edge of the HCP-blade to obtain the optimal profile, which yield the largest An.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...