Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(46): 32062-32070, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37982202

RESUMEN

The transition to neuromorphic devices is relevant to the development of materials capable of providing electronic switching in response to external stimuli. In the present work, the Hf2CO2/MoS2 heterostructure under biaxial strain, interlayer coupling, and an electric field was investigated by first-principles calculations based on density functional theory. We have shown that the influence of lateral deformation as well as the perpendicular external electric field is more significant compared to the influence of external vertical pressure on changes in the heterojunction type of heterostructure. The lateral stretching leads to a type-I and lateral compression results in a type-II heterojunction, and an external electric field also has an effect on heterojunction type. The combination of these impacts can tune the Hf2CO2/MoS2 heterostructure. The current work suggests a compelling way to make type-I and type-II heterostructure types consisting of Hf2CO2 and MoS2 monolayers for new nanodevices in fields like photonics, electronics, optoelectronic and neuromorphic applications.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37888937

RESUMEN

Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.

3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904455

RESUMEN

The efficiency of electronic microchip-based devices increases with advancements in technology, while their size decreases. This miniaturization leads to significant overheating of various electronic components, such as power transistors, processors, and power diodes, leading to a reduction in their lifespan and reliability. To address this issue, researchers are exploring the use of materials that offer efficient heat dissipation. One promising material is a polymer-boron nitride composite. This paper focuses on 3D printing using digital light processing of a model of a composite radiator with different boron nitride fillings. The measured absolute values of the thermal conductivity of such a composite in the temperature range of 3-300 K strongly depend on the concentration of boron nitride. Filling the photopolymer with boron nitride leads to a change in the behavior of the volt-current curves, which may be associated with the occurrence of percolation currents during the deposition of boron nitride. The ab initio calculations show the behavior and spatial orientation of BN flakes under the influence of an external electric field at the atomic level. These results demonstrate the potential use of photopolymer-based composite materials filled with boron nitride, which are manufactured using additive techniques, in modern electronics.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678120

RESUMEN

Chevrel non-van der Waals crystals are promising candidates for the fabrication of novel 2D materials due to their versatile crystal structure formed by covalently bonded (Mo6X8) clusters (X-chalcogen atom). Here, we present a comprehensive theoretical study of the stability and properties of Mo-based Janus 2D structures with Chevrel structures consisting of chalcogen and halogen atoms via density functional theory calculations. Based on the analysis performed, we determined that the S2Mo3I2 monolayer is the most promising structure for overall photocatalytic water-splitting application due to its appropriate band alignment and its ability to absorb visible light. The modulated Raman spectra for the representative structures can serve as a blueprint for future experimental verification of the proposed structures.

5.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556566

RESUMEN

Herein we report a simple and easily scalable method for fabricating ZnO/h-BN composites with tunable photoluminescence (PL) characteristics. The h-BN support significantly enhances the ultraviolet (UV) emission of ZnO nanoparticles (NPs), which is explained by the ZnO/h-BN interaction and the change in the electronic structure of the ZnO surface. When h-BN NPs are replaced with h-BN microparticles, the PL in the UV region increases, which is accompanied by a decrease in visible light emission. The dependence of the PL properties of ZnO NPs on the thickness of h-BN carriers, observed for the first time, is explained by a change in the dielectric constant of the support. A quantum chemical analysis of the influence of the h-BN thickness on the electron density redistribution at the wZnO/h-BN interface and on the optical properties of the wZnO/h-BN composites was carried out. Density functional theory (DFT) calculations show the appearance of hybridization at the h-BN/wZnO interface and an increase in the intensity of absorption peaks with an increase in the number of h-BN layers. The obtained results open new possibilities for controlling the properties of ZnO/h-BN heterostructures for various optical applications.

6.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422147

RESUMEN

Currently, new nanomaterials for high-capacity lithium-ion batteries (LIBs) and sodium- ion batteries (SIBs) are urgently needed. Materials combining porous structure (such as representatives of metal-organic frameworks) and the ability to operate both with lithium and sodium (such as transition-metal dichalcogenides) are of particular interest. Our work reports the computational modelling of a new A'-MoS2 structure and its application in LIBs and SIBs. The A'-MoS2 monolayer was dynamically stable and exhibited semiconducting properties with an indirect band gap of 0.74 eV. A large surface area, together with the presence of pores resulted in a high capacity of the A'-MoS2 equal to ~391 mAg-1 at maximum filling for both Li and Na atoms. High adsorption energies and small values of diffusion barriers indicate that the A'-MoS2 is promising in the application of anode material in LIBs and SIBs.

7.
Materials (Basel) ; 15(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35683283

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDs) with Janus structures are attracting increasing attention due to their emerging superior properties in breaking vertical mirror symmetry when compared to conventional TMDs, which can be beneficial in fields such as piezoelectricity and photocatalysis. The structural investigations of such materials, along with other 2D materials, can be successfully carried out using the Raman spectroscopy method. One of the key elements in such research is the theoretical spectrum, which may assist in the interpretation of experimental data. In this work, the simulated Raman spectrum of 1H-MoSSe and the predicted Raman spectra for 1T, 1T', and 1H' polymorph modifications of MoSSe monolayers were characterized in detail with DFT calculations. The interpretation of spectral profiles was made based on the analysis of the lattice dynamics and partial phonon density of states. The presented theoretical data open the possibility of an accurate study of MoSSe polymorphs, including the control of the synthesized material quality and the characterization of samples containing a mixture of polymorphs.

8.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269262

RESUMEN

Novel magnetic gas sensors are characterized by extremely high efficiency and low energy consumption, therefore, a search for a two-dimensional material suitable for room temperature magnetic gas sensors is a critical task for modern materials scientists. Here, we computationally discovered a novel ultrathin two-dimensional antiferromagnet V3S4, which, in addition to stability and remarkable electronic properties, demonstrates a great potential to be applied in magnetic gas sensing devices. Quantum-mechanical calculations within the DFT + U approach show the antiferromagnetic ground state of V3S4, which exhibits semiconducting electronic properties with a band gap of 0.36 eV. A study of electronic and magnetic response to the adsorption of various gas agents showed pronounced changes in properties with respect to the adsorption of NH3, NO2, O2, and NO molecules on the surface. The calculated energies of adsorption of these molecules were -1.25, -0.91, -0.59, and -0.93 eV, respectively. Obtained results showed the prospective for V3S4 to be used as effective sensing materials to detect NO2 and NO, for their capture, and for catalytic applications in which it is required to lower the dissociation energy of O2, for example, in oxygen reduction reactions. The sensing and reducing of NO2 and NO have great importance for improving environmental protection and sustainable development.

9.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209122

RESUMEN

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Asunto(s)
Antivirales/química , COVID-19/prevención & control , Materiales Biocompatibles Revestidos/química , Nanofibras/química , SARS-CoV-2/química , Animales , COVID-19/transmisión , Chlorocebus aethiops , Cobre/química , Oro/química , Humanos , Poliésteres/química , Titanio/química , Células Vero
10.
Nano Lett ; 22(4): 1812-1817, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-34890208

RESUMEN

Control of a single ionic charge state by altering the number of bound electrons has been considered as an ultimate testbed for atomic charge-induced interactions and manipulations, and such subject has been studied in artificially deposited objects on thin insulating layers. We demonstrate that an entire layer of controllable atomic charges on a periodic lattice can be obtained by cleaving metallic Co1/3NbS2, an intercalated transition metal dichalcogenide. We identified a metastable charge state of Co with a different valence and manipulated atomic charges to form a linear chain of the metastable charge state. Density functional theory investigation reveals that the charge state is stable due to a modified crystal field at the surface despite the coupling between NbS2 and Co via a1g orbitals. The idea can be generalized to other combinations of intercalants and base matrices, suggesting that they can be a new platform to explore single-atom-operational 2D electronics/spintronics.

11.
Membranes (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34940466

RESUMEN

Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.

12.
Phys Chem Chem Phys ; 23(46): 26178-26184, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807199

RESUMEN

Oxidation is a unique process that significantly changes the structure and properties of a material. Doping of h-BN by oxygen is a hot topic in material science leading to the possibility of synthesis of novel 2D structures with customized electronic properties. It is still unclear how the atomic structure changes in the presence of external atoms during the oxidation of h-BN. We predict novel two-dimensional (2D) arrangements of boron oxynitride using the evolutionary algorithm of crystal structure prediction USPEX. All considered structures demonstrate semiconducting properties with a reduced bandgap compared with h-BN. Both molecular dynamics and phonon calculations show the dynamical stability of the new 2D B5N3O2 phase, and our calculations demonstrate that it can form a bulk layered structure with an interlayer distance larger than that of pure h-BN. The optical characterization shows a redshift of the absorption spectrum compared with pure h-BN. Incorporation of oxygen into the structure of 2D BN during synthesis or oxidation can dramatically change the covalent network of h-BN while preserving its two-dimensionality and flatness, following the presence of local dipole moments which could improve the piezoelectric properties.

13.
Nanoscale ; 12(45): 23248-23258, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33206100

RESUMEN

Magnetic halogen doped MoX2 (X = S and Se) monolayers influenced the electronic structure of graphene through a proximity effect. This process was observed using state-of-the-art calculations. It was found that the substitution of a single chalcogen atom with a halogen atom (F, Cl, Br, and I) results in n-type doping of MoX2. An additional electron from the dopant is localized on binding orbitals with the nearest Mo atoms and leads to the formation of magnetism in the dichalcogenide layer. Detailed analysis of halogen doped MoX2/graphene heterostructures demonstrated the induction of spin polarization in graphene near the Fermi energy. Significant spin polarization near the Fermi energy and n-type doping were observed in the graphene layer of MoSe2/graphene heterostructures with MoSe2 doped with iodine. At the same time, fluorine-doped MoSe2 does not cause n-doping in graphene, while spin polarization still takes place. The possibility for the detection of the arrangement of the halogen impurities at the MoX2 basal plane even with the graphene layer deposited on top was demonstrated through STM measurements which will be undoubtedly useful for the fabrication of electronic schemes and elements based on the proposed heterostructures for their further application in nanoelectronics and spintronics.

14.
Phys Chem Chem Phys ; 22(26): 14651-14659, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573623

RESUMEN

One dimensional Ta2(Pd/Pt)3(S/Se)8 nanoribbons (TPS-NR) are considered as a promising material in nanoelectronics due to their intrinsic semiconducting electronic properties. In this article, we study the stability of TPS-NR by considering their oxidation process. Our calculations showed that the Ta2(Pd/Pt)3Se8 nanoribbons are more environmentally stable than Ta2(Pd/Pt)3S8-NR. We studied the thermodynamics of the formation of monovacancies and their impact on the electronic properties of TPS-NR. Additionally, the sensing properties of environmentally stable Ta2Pd3Se8 nanoribbons were investigated. The observed changes of the electronic structure and transport properties after the adsorption of CO, NH3 and NO2 molecules reveal the mechanisms of possible application of Ta2Pd3Se8 nanoribbons as a gas sensor. The electronic transport properties of the nanoribbons exhibit a notable response to the presence of gas molecules.

15.
J Phys Chem Lett ; 11(10): 3821-3827, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32330050

RESUMEN

NaCl is one of the simplest compounds and was thought to be well-understood, and yet, unexpected complexities related to it were uncovered at high pressure and in low-dimensional states. Here, exotic hexagonal NaCl thin films on the (110) diamond surface were crystallized in the experiment following a theoretical prediction based on ab initio evolutionary algorithm USPEX. State-of-the-art calculations and experiments showed the existence of a hexagonal NaCl thin film, which is due to the strong chemical interaction of the NaCl film with the diamond substrate.

16.
J Phys Chem Lett ; 11(2): 504-509, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31892279

RESUMEN

Single-walled carbon nanotubes (SWCNTs) possess extraordinary physical and chemical properties. Thin films of randomly oriented SWCNTs have great potential in many opto-electro-mechanical applications. However, good adhesion of SWCNT films with a substrate material is pivotal for their practical use. Here, for the first time, we systematically investigate the adhesion properties of SWCNT thin films with commonly used substrates such as glass (SiO2), indium tin oxide (ITO), crystalline silicon (C-Si), amorphous silicon (a-Si:H), zirconium oxide (ZrO2), platinum (Pt), polydimethylsiloxane (PDMS), and SWCNTs for self-adhesion using atomic force microscopy. By comparing the results obtained in air and inert Ar atmospheres, we observed that the surface state of the materials greatly contributes to their adhesion properties. We found that the SWCNT thin films have stronger adhesion in an inert atmosphere. The adhesion in the air can be greatly improved by a fluorination process. Experimental and theoretical analyses suggest that adhesion depends on the atmospheric conditions and surface functionalization.

17.
Adv Mater ; 32(6): e1905734, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793057

RESUMEN

Graphene-based vertical spin valves (SVs) are expected to offer a large magnetoresistance effect without impairing the electrical conductivity, which can pave the way for the next generation of high-speed and low-power-consumption storage and memory technologies. However, the graphene-based vertical SV has failed to prove its competence due to the lack of a graphene/ferromagnet heterostructure, which can provide highly efficient spin transport. Herein, the synthesis and spin-dependent electronic properties of a novel heterostructure consisting of single-layer graphene (SLG) and a half-metallic Co2 Fe(Ge0.5 Ga0.5 ) (CFGG) Heusler alloy ferromagnet are reported. The growth of high-quality SLG with complete coverage by ultrahigh-vacuum chemical vapor deposition on a magnetron-sputtered single-crystalline CFGG thin film is demonstrated. The quasi-free-standing nature of SLG and robust magnetism of CFGG at the SLG/CFGG interface are revealed through depth-resolved X-ray magnetic circular dichroism spectroscopy. Density functional theory (DFT) calculation results indicate that the inherent electronic properties of SLG and CFGG such as the linear Dirac band and half-metallic band structure are preserved in the vicinity of the interface. These exciting findings suggest that the SLG/CFGG heterostructure possesses distinctive advantages over other reported graphene/ferromagnet heterostructures, for realizing effective transport of highly spin-polarized electrons in graphene-based vertical SV and other advanced spintronic devices.

18.
Nanotechnology ; 31(12): 125705, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31770728

RESUMEN

Two-dimensional materials such as hexagonal boron nitride (h-BN) and graphene have attracted wide attention in nanoelectronics and spintronics. Since their electronic characteristics are strongly affected by the local atomic structure, the heteroatom doping could allow us to tailor the electronic and physical properties of two-dimensional materials. In this study, a non-chemical method of heteroatom doping into h-BN under high-energy ion irradiation was demonstrated for the LiF/h-BN/Cu heterostructure. Spectroscopic analysis of chemical states on the relevant atoms revealed that 6% ± 2% fluorinated h-BN is obtained by the irradiation of 2.4 MeV Cu2+ ions with the fluence up to 1014 ions cm-2. It was shown that the high-energy ion irradiation leads to a single-sided fluorination of h-BN by the formation of the fluorinated sp 3-hybridized BN.

19.
ACS Energy Lett ; 4(8): 1947-1953, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31763462

RESUMEN

Among the main appeals of single-atom catalysts are the ultimate efficiency of material utilization and the well-defined nature of the active sites, holding the promise of rational catalyst design. A major challenge is the stable decoration of various substrates with a high density of individually dispersed and uniformly active monatomic sites. Transition metal chalcogenides (TMCs) are broadly investigated catalysts, limited by the relative inertness of their pristine basal plane. We propose that TMC single layers modified by substitutional heteroatoms can harvest the synergistic benefits of stably anchored single-atom catalysts and activated TMC basal planes. These solid-solution TMC catalysts offer advantages such as simple and versatile synthesis, unmatched active site density, and a stable and well-defined single-atom active site chemical environment. The unique features of heteroatom-doped two-dimensional TMC crystals at the origin of their catalytic activity are discussed through the examples of various TMC single layers doped with individual oxygen heteroatoms.

20.
ACS Appl Mater Interfaces ; 11(32): 28699-28719, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31339695

RESUMEN

A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains (Escherichia coli K261, Klebsiella pneumoniae B1079k/17-3, Acinetobacter baumannii B1280A/17, Staphylococcus aureus no. 839, Staphylococcus epidermidis i5189-1, Enterococcus faecium Ya-235: VanA, E. faecium I-237: VanA, and E. coli U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution. The results indicated that metal ion implantation and subsequent annealing significantly changed the chemistry of the TiCaPCON film surface. This, in turn, greatly affected the shedding of ions, ROS formation, potential difference between film components, and antibacterial activity. The presence of NPs was critical for ROS generation under UV or daylight irradiation. By eliminating the potential contribution of ions and ROS, we have shown that bacteria can be killed using direct microgalvanic interactions. The possibility of charge redistribution at the interfaces between Pt NPs and TiO2 (anatase and rutile), TiC, TiN, and TiCN components was demonstrated using density functional theory calculations. The TiCaPCON-supported Pt and Fe NPs were not toxic for lymphocytes and had no effect on the ability of lymphocytes to activate in response to a mitogen. This study provides new insights into understanding and designing of antibacterial yet biologically safe surfaces.


Asunto(s)
Antibacterianos , Bacterias/crecimiento & desarrollo , Hierro , Nanopartículas del Metal/química , Platino (Metal) , Antibacterianos/química , Antibacterianos/farmacología , Humanos , Hierro/química , Hierro/farmacología , Linfocitos/metabolismo , Ensayo de Materiales , Platino (Metal)/química , Platino (Metal)/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...