Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 746: 109735, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652149

RESUMEN

The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.


Asunto(s)
Fungicidas Industriales , Animales , Ratas , Hígado , Mitocondrias , Glutatión , Glutatión Transferasa
2.
Bioelectrochemistry ; 150: 108369, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36638678

RESUMEN

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.


Asunto(s)
Fósforo , Protones , Ésteres/análisis , Ésteres/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias , Membrana Dobles de Lípidos/química
3.
Cerebrovasc Dis Extra ; 13(1): 47-55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36702110

RESUMEN

INTRODUCTION: Early determination of COVID-19 severity and health outcomes could facilitate better treatment of patients. Different methods and tools have been developed for predicting outcomes of COVID-19, but they are difficult to use in routine clinical practice. METHODS: We conducted a prospective cohort study of inpatients aged 20-92 years, diagnosed with COVID-19 to determine whether their individual 5-year absolute risk of stroke at the time of hospital admission predicts the course of COVID-19 severity and mortality. The risk of stroke was determined by the Stroke Riskometer mobile application. RESULTS: We examined 385 patients hospitalized with COVID-19 (median age 61 years). The participants were categorized based on COVID-19 severity: 271 (70.4%) to the "not severe" and 114 (29.6%) to the "severe" groups. The median risk of stroke the next day after hospitalization was significantly higher among patients in the severe group (2.83, 95% CI: 2.35-4.68) versus the not severe group (1.11, 95% CI: 1.00-1.29). The median risk of stroke and median systolic blood pressure (SBP) were significantly higher among non-survivors (12.04, 95% CI: 2.73-21.19) and (150, 95% CI: 140-170) versus survivors (1.31, 95% CI: 1.14-1.52) and (134, 95% CI: 130-135), respectively. Those who spent more than 2.5 h a week on physical activity were 3.1 times more likely to survive from COVID-19. Those who consumed more than one standard alcohol drink a day, or suffered with atrial fibrillation, or had poor memory were 2.5, 2.3, and 2.6 times more likely not to survive from COVID-19, respectively. CONCLUSIONS: High risk of stroke, physical inactivity, alcohol intake, high SBP, and atrial fibrillation are associated with severity and mortality of COVID-19. Our findings suggest that the Stroke Riskometer app could be used as a simple predictive tool of COVID-19 severity and mortality.


Asunto(s)
Fibrilación Atrial , COVID-19 , Aplicaciones Móviles , Accidente Cerebrovascular , Humanos , Persona de Mediana Edad , COVID-19/diagnóstico , Proyectos Piloto , Estudios Prospectivos , Accidente Cerebrovascular/terapia
4.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878680

RESUMEN

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP , Fosforilación Oxidativa , Adenosina Trifosfato , Aldehído Deshidrogenasa Mitocondrial , Animales , Ésteres , Células HEK293 , Humanos , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Ratas , Umbeliferonas , Desacopladores
5.
Cardiol Res ; 12(6): 363-368, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34970367

RESUMEN

BACKGROUND: There is hypothesis that endothelial function enhancement is strongly associated with better outcome and functional class improvement in heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-range ejection fraction (HFmrEF) patients. Perindopril is the only angiotensin-converting enzyme inhibitor (ACEI) drug with proven positive effect on the endothelium in coronary artery disease (CAD) patients. In patients with HFpEF and HFmrEF, its impact is still unknown. The aim of this study was to assess perindopril's influence on endothelial dysfunction markers in these groups of patients. METHODS: We included 60 patients with HFpEF and HFmrEF. At the baseline, endothelial dysfunction biomarkers were measured by IFA and echocardiographic parameters (left atrial volume index (LAVI), ejection fraction (EF), left ventricular mass index (LVMI), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-diastolic volume (LVEDV)) were studied. In patients with no history of previous ACEI or angiotensin II receptor blockers (ARBs) therapy, perindopril was prescribed for 12 months. If patient was treated with ARB or ACEI drug other than perindopril before the study, after 48-h withdrawal period, previous drug was replaced by perindopril. RESULTS: After 12-month therapy with perindopril, E-selectin decreased from 57.25 to 46.05 ng/mL and from 56.55 to 47.6 ng/mL in HFpEF and HFmrEF patients, respectively (P < 0.05). Significant reductions from 0.99 to 0.76 pg/mL (P < 0.05) and from 1.08 to 0.97 pg/mL (P < 0.05) in endothelin-1 level were shown in patients with HFpEF and HFmrEF. CONCLUSION: The 12-month therapy with perindopril leads to LAVI reduction in HFmrEF patients and potential endothelial dysfunction markers decrease in HFpEF and HFmrEF patients.

6.
Bioelectrochemistry ; 137: 107673, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32971482

RESUMEN

Small molecules capable of uncoupling respiration and ATP synthesis in mitochondria are protective towards various cell malfunctions. Recently (2-fluorophenyl){6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine (BAM15), a new compound of this type, has become popular as a potent mitochondria-selective depolarizing agent producing minimal adverse effects. To validate protonophoric mechanism of BAM15 action, we examined its behavior in bilayer lipid membranes (BLM). BAM15 proved to be a typical anionic protonophore with the activity on planar membranes being suppressed upon decreasing membrane dipole potential. In both planar BLM and liposomes, BAM15 induced proton conductance with the potency close to that of the classical protonophoric uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). In isolated rat liver mitochondria (RLM), BAM15 caused membrane potential collapse, increased respiration rate and induced Ca2+ efflux at concentrations slightly higher than those for CCCP. Surprisingly, the uncoupling action of BAM15 on isolated RLM, in contrast to that of CCCP, was partially reversed by carboxyatractyloside (CATR), an inhibitor of adenine nucleotide translocase, thereby indicating involvement of this protein in the BAM15-induced uncoupling. BAM15 inhibited growth of Bacillus subtilis at micromolar concentrations. In electrophysiological experiments on molluscan neurons, BAM15 caused plasma membrane depolarization and suppression of electrical activity, but the effect developed more slowly than that of CCCP.


Asunto(s)
Bacterias/efectos de los fármacos , Membrana Dobles de Lípidos/química , Liposomas/química , Mitocondrias Hepáticas/efectos de los fármacos , Neuronas/efectos de los fármacos , Protones , Desacopladores/farmacología , Animales , Bacterias/crecimiento & desarrollo , Calcio/metabolismo , Lymnaea , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Neuronas/fisiología , Ratas
7.
Biochim Biophys Acta Biomembr ; 1862(9): 183303, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32251647

RESUMEN

Usnic acid (UA), a secondary lichen metabolite, has long been popular as one of natural fat-burning dietary supplements. Similar to 2,4-dinitrophenol, the weight-loss effect of UA is assumed to be associated with its protonophoric uncoupling activity. Recently, we have shown that the ability of UA to shuttle protons across both mitochondrial and artificial membranes is strongly modulated by the presence of calcium ions in the medium. Here, by using fluorescent probes, we studied the calcium-transporting capacity of usnic acid in a variety of membrane systems comprising liposomes, isolated rat liver mitochondria, erythrocytes and rat basophilic leukemia cell culture (RBL-2H3). At concentrations of tens of micromoles, UA appeared to be able to carry calcium ions across membranes in all the systems studied. Similar to the calcium ionophore A23187, UA caused degranulation of RBL-2H3 cells. Therefore, UA, being a protonophoric uncoupler of oxidative phosphorylation, at higher concentrations manifests itself as a calcium ionophore, which could be relevant to its overdose toxicity in humans and also its phytotoxicity.


Asunto(s)
Benzofuranos/química , Ionóforos de Calcio/química , Transporte Iónico/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , 2,4-Dinitrofenol/química , Animales , Benzofuranos/farmacología , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Línea Celular Tumoral , Eritrocitos/efectos de los fármacos , Humanos , Líquenes/química , Mitocondrias/efectos de los fármacos , Protones , Ratas
8.
Biochim Biophys Acta Biomembr ; 1860(5): 1000-1007, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29317196

RESUMEN

The formerly widely used broad-spectrum biocide triclosan (TCS) has now become a subject of special concern due to its accumulation in the environment and emerging diverse toxicity. Despite the common opinion that TCS is an uncoupler of oxidative phosphorylation in mitochondria, there have been so far no studies of protonophoric activity of this biocide on artificial bilayer lipid membranes (BLM). Yet only few works have indicated the relationship between TCS impacts on mitochondria and nerve cell functioning. Here, we for the first time report data on a high protonophoric activity of TCS on planar BLM. TCS proved to be a more effective protonophore on planar BLM, than classical uncouplers. Correlation between a strong depolarizing effect of TCS on bacterial membranes and its bactericidal action on Bacillus subtilis might imply substantial contribution of TCS protonophoric activity to its antimicrobial efficacy. Protonophoric activity of TCS, monitored by proton-dependent mitochondrial swelling, resulted in Ca2+ efflux from mitochondria. A comparison of TCS effects on molluscan neurons with those of conventional mitochondrial uncouplers allowed us to ascribe the TCS-induced neuronal depolarization and suppression of excitability to the consequences of mitochondrial deenergization. Also similar to the action of common uncouplers, TCS caused a pronounced increase in frequency of miniature end-plate potentials at neuromuscular junctions. Thus, the TCS-induced mitochondrial uncoupling could alter neuronal function through distortion of Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Protones , Triclosán/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Lymnaea , Potenciales de la Membrana/fisiología , Ratones , Potenciales Postsinápticos Miniatura/fisiología , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Fosforilación Oxidativa/efectos de los fármacos , Ratas , Desacopladores/farmacología
9.
Microb Drug Resist ; 17(4): 583-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22008039

RESUMEN

The antibiotic resistance profiles of 150 heterotrophic bacterial isolates recovered from two lakes in Southern Siberia was determined to examine the effect of anthropogenic disturbance on aquatic ecosystems. Resistance was detected in at least one strain for seven of the eight antibiotics tested, the exception being amikacin. Resistance to antibiotics predominated in the areas of the lakes likely to be under highest anthropogenic disturbance. Resistance was more frequently observed among isolates recovered from within the proximity to a tourist resort (Lake Shira; 63% of bacteria with multiple antibiotic resistance (MAR) in the resort part), or the shore line (Lake Shunet; 100% of bacteria with MAR) than among isolates from the center of each lake; 42.5% of bacteria with MAR from Lake Shira and 25%/75% of bacteria are resistant to three/four antibiotics consequently from Lake Shunet. Plasmid profiles were determined from a sample of 37 multiply resistant bacteria, and between one and four plasmids were isolated from each isolate; the plasmids ranged in size from 2.3 to 23.1 kb. These observations are consistent with anthropogenic disturbance playing one of the key roles in the dissemination of antibiotic resistance in the aquatic ecosystems.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Colonias de Salud , Procesos Heterotróficos/efectos de los fármacos , Lagos/microbiología , Contaminación del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Monitoreo del Ambiente , Plásmidos/genética , Siberia , Microbiología del Agua
10.
J Exp Biol ; 212(Pt 10): 1559-67, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19411550

RESUMEN

The nutrient amino acid transporter (NAT) subfamily of the neurotransmitter sodium symporter family (NSS, also known as the solute carrier family 6, SLC6) represents transport mechanisms with putative synergistic roles in the absorption of essential and conditionally essential neutral amino acids. It includes a large paralogous expansion of insect-specific genes, with seven genes from the genome of the malaria mosquito, Anopheles gambiae. One of the An. gambiae NATs, AgNAT8, was cloned, functionally expressed and characterized in X. laevis oocytes as a cation-coupled symporter of aromatic amino acids, preferably l-phenylalanine, l-tyrosine and l-DOPA. To explore an evolutionary trend of NAT-SLC6 phenotypes, we have cloned and characterized AgNAT6, which represents a counterpart of AgNAT8 descending from a recent gene duplication (53.1% pairwise sequence identity). In contrast to AgNAT8, which preferably mediates the absorption of phenol-branched substrates, AgNAT6 mediates the absorption of indole-branched substrates with highest apparent affinity to tryptophan (K(0.5)(Trp)=1.3 micromol l(-1) vs K(0.5)(Phe)=430 micromol l(-1)) and [2 or 1 Na(+) or K(+)]:[aromatic substrate] stoichiometry. AgNAT6 is highly transcribed in absorptive and secretory regions of the alimentary canal and specific neuronal structures, including the neuropile of ventral ganglia and sensory afferents. The alignment of AgNATs and LeuT(Aa), a bacterial NAT with a resolved 3D structure, reveals three amino acid differences in the substrate-binding pocket that may be responsible for the indole- vs phenol-branch selectivity of AgNAT6 vs AgNAT8. The identification of transporters with a narrow selectivity for essential amino acids suggests that basal expansions in the SLC6 family involved duplication and retention of NATs, improving the absorption and distribution of under-represented essential amino acids and related metabolites. The identified physiological and expression profiles suggest unique roles of AgNAT6 in the active absorption of indole-branched substrates that are used in the synthesis of the neurotransmitter serotonin as well as the key circadian hormone and potent free-radical scavenger melatonin.


Asunto(s)
Anopheles/metabolismo , Clonación Molecular , Sodio/metabolismo , Simportadores/metabolismo , Triptófano/metabolismo , Secuencia de Aminoácidos , Animales , Anopheles/genética , Regulación de la Expresión Génica/fisiología , Larva/metabolismo , Datos de Secuencia Molecular , Filogenia , Simportadores/química , Simportadores/genética
11.
Insect Biochem Mol Biol ; 38(10): 923-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18718864

RESUMEN

The CG3252 gene product, DmNAT1, represents the first Nutrient Amino acid Transporter cloned from Drosophila. It absorbs a broader set of neutral amino acids versus earlier characterized insect NATs and mammalian NATs-B(0) system transporters from the Sodium Neurotransmitter symporter Family (SNF, a.k.a. solute carrier family 6, SLC6). In addition to B(0)-specific l-substrates, DmNAT1 equally or more effectively transports d-amino acids with sub-millimolar affinities and 1:1 sodium:amino acid transport stoichiometry. DmNAT1 is strongly transcribed in the absorptive and secretory regions of the larval alimentary canal and larval brain, revealing its roles in the primary absorption and redistribution of large neutral l-amino acids as well as corresponding d-isomers. The absorption of d-amino acids via DmNAT1 may benefit the acquisition of fermented and symbiotic products, and may support the unique capacity of fruit fly larvae to utilize a diet with substitution of essential amino acids by d-isomers. It also suggests a remarkable adaptive plasticity of NAT-SLC6 mechanisms via alterations of a few identifiable sites in the substrate-binding pocket. The strong transcription in the brain suggests roles for DmNAT1 in neuronal nutrition and clearance of l-neutral amino acids from the fly brain. In addition, neuronal DmNAT1 may absorb synaptic d-serine and modulate NMDA receptor-coupled signal transduction. The characterization of the first invertebrate B(0)-like transporter extends the biological roles of the SLC6 family, revealing adaptations for the absorption of d-isomers of the essential amino acids. These findings suggest that some members of the NAT-SLC6 subfamily are evolving specific properties which contribute to nutrient symbiotic relationships and neuronal functions.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos Esenciales/metabolismo , Drosophila melanogaster/metabolismo , Absorción Intestinal , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Isomerismo , Larva/metabolismo , Datos de Secuencia Molecular
12.
J Exp Biol ; 211(Pt 10): 1594-602, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18456887

RESUMEN

The nutrient amino acid transporter (NAT) subfamily is the largest subdivision of the sodium neurotransmitter symporter family (SNF; also known as SLC6; HUGO). There are seven members of the NAT population in the African malaria mosquito Anopheles gambiae, two of which, AgNAT6 and AgNAT8, preferably transport indole- and phenyl-branched substrates, respectively. The relative expression and distribution of these aromatic NATs were examined with transporter-specific antibodies in Xenopus oocytes and mosquito larval alimentary canal, representing heterologous and tissue expression systems, respectively. NAT-specific aromatic-substrate-induced currents strongly corresponded with specific accumulation of both transporters in the plasma membrane of oocytes. Immunolabeling revealed elevated expressions of both transporters in specific regions of the larval alimentary canal, including salivary glands, cardia, gastric caeca, posterior midgut and Malpighian tubules. Differences in relative expression densities and spatial distribution of the transporters were prominent in virtually all of these regions, suggesting unique profiles of the aromatic amino acid absorption. For the first time reversal of the location of a transporter between apical and basal membranes was identified in posterior and anterior epithelial domains corresponding with secretory and absorptive epithelial functions, respectively. Both aromatic NATs formed putative homodimers in the larval gut whereas functional monomers were over-expressed heterologously in Xenopus oocytes. The results unequivocally suggest functional synergy between substrate-specific AgNAT6 and AgNAT8 in intracellular absorption of aromatic amino acids. More broadly, they suggest that the specific selectivity, regional expression and polarized membrane docking of NATs represent key adaptive traits shaping functional patterns of essential amino acid absorption in the metazoan alimentary canal and other tissues.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Anopheles/metabolismo , Sistema Digestivo/metabolismo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Larva/metabolismo , Oligopéptidos/genética , Oocitos/metabolismo , Xenopus laevis
13.
Microbiol Res ; 163(2): 152-60, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-16762536

RESUMEN

Resistance to Ampicillin and Kanamycin displayed by heterotrophic bacteria isolated in Summer and in Spring from the littoral and the central parts of Lake Shira (a therapeutic lake in the Khakasia Republic, Russia) has been investigated. It has been found that in Summer, human and animal microflora featuring multiple antibiotic resistance (to Ampicillin and Kanamycin) predominates in all the studied stations of the littoral zone of the lake. In Spring, concentrations of bacteria featuring multiple antibiotic resistance decrease significantly and bacteria sensitive to antibiotics predominate in the lake. Emergence of multiple antibiotic resistance in bacteria of Lake Shira is caused by the input of allochthonous bacteria into the lake; this feature of heterotrophic bacteria of Lake Shira can be used to monitor the impact on the ecosystem made by health resorts.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Ecosistema , Agua Dulce/microbiología , Procesos Heterotróficos/efectos de los fármacos , Animales , Bacterias/aislamiento & purificación , Recuento de Colonia Microbiana , Monitoreo del Ambiente , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Federación de Rusia , Estaciones del Año
14.
J Exp Biol ; 209(Pt 16): 3183-98, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16888066

RESUMEN

Nutrient amino acid transporters (NATs, subfamily of sodium neurotransmitter symporter family SNF, a.k.a. SLC6) represent a set of phylogenetically and functionally related transport proteins, which perform intracellular absorption of neutral, predominantly essential amino acids. Functions of NATs appear to be critical for the development and survival in organisms. However, mechanisms of specific and synergetic action of various NAT members in the amino acid transport network are virtually unexplored. A new transporter, agNAT8, was cloned from the malaria vector mosquito Anopheles gambiae (SS). Upon heterologous expression in Xenopus oocytes it performs high-capacity, sodium-coupled (2:1) uptake of nutrients with a strong preference for aromatic catechol-branched substrates, especially phenylalanine and its derivatives tyrosine and L-DOPA, but not catecholamines. It represents a previously unknown SNF phenotype, and also appears to be the first sodium-dependent B(0) type transporter with a narrow selectivity for essential precursors of catecholamine synthesis pathways. It is strongly and specifically transcribed in absorptive and secretory parts of the larval alimentary canal and specific populations of central and peripheral neurons of visual-, chemo- and mechano-sensory afferents. We have identified a new SNF transporter with previously unknown phenotype and showed its important role in the accumulation and redistribution of aromatic substrates. Our results strongly suggest that agNAT8 is an important, if not the major, provider of an essential catechol group in the synthesis of catecholamines for neurochemical signaling as well as ecdysozoan melanization and sclerotization pathways, which may include cuticle hardening/coloring, wound curing, oogenesis, immune responses and melanization of pathogens.


Asunto(s)
Sistemas de Transporte de Aminoácidos/fisiología , Aminoácidos Aromáticos/metabolismo , Anopheles/metabolismo , Proteínas de Insectos/fisiología , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Animales , Anopheles/anatomía & histología , Anopheles/genética , Catecolaminas/biosíntesis , Catecoles/metabolismo , Clonación Molecular , Conductividad Eléctrica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Alineación de Secuencia , Transducción de Señal/genética , Xenopus
15.
Luminescence ; 20(2): 90-6, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15803502

RESUMEN

The Institute of Biophysics SB RAS hosts and maintains a specialized collection of luminous bacteria (CCIBSO 836) containing over 700 strains isolated in various regions of the world's oceans. The culture collection is a source of lux genes and biologically active substances. The wide application of bioluminescence in medicine and ecology has given importance to analysing information on the structure and functioning of bioluminescence systems in natural and transgenic microorganisms, as well as on their features that are closely interrelated with bioluminescence. The aims of our BIOLUMBASE database are: gathering information on microorganisms with lux genes, their analysis and free access, and distribution of this data throughout the global network. The database includes two sections, natural and transgenic luminous microorganisms, and is updated by our own experimental results, the published literature and internet resources. For the future, a publicly available internet site for BIOLUMBASE is planned. This will list the strains and provide comprehensive information on the properties and functions of luminous bacteria, the mechanisms of regulation of bioluminescence systems, constructs with lux genes, and applications of bioluminescence in microbiology, ecology, medicine and biotechnology. It is noteworthy that this database will also be useful for evaluation of biological hazards of transgenic strains. Users will be able to carry out bibliographic and strain searches starting from any feature of interest.


Asunto(s)
Bacterias/metabolismo , Bases de Datos Factuales , Luminiscencia , Proteínas Luminiscentes/metabolismo , Organismos Modificados Genéticamente/fisiología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecología , Proteínas Luminiscentes/genética , Biología Marina , Photobacterium/genética , Photobacterium/aislamiento & purificación , Transgenes/fisiología
16.
J Exp Biol ; 207(Pt 26): 4595-603, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15579555

RESUMEN

Removal of a vestibular organ (unilateral labyrinthectomy, UL) in the lamprey results in a loss of equilibrium, so that the animal rolls (rotates around its longitudinal axis) when swimming. Owing to vestibular compensation, UL animals gradually restore postural equilibrium and, in a few weeks, swim without rolling. Important elements of the postural network in the lamprey are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections to the spinal cord. As shown previously, a loss of equilibrium after UL is associated with disappearance of vestibular responses in the contralateral group of RS neurons. Are these responses restored in animals after compensation? To answer this question, we recorded vestibular responses in RS neurons (elicited by rotation of the compensated animal in the roll plane) by means of chronically implanted electrodes. We found that the responses re-appeared in the compensated animals. This result supports the hypothesis that the loss of equilibrium after UL was caused by asymmetry in supraspinal motor commands, and the recovery of postural control in compensated animals was due to a restoration of symmetry.


Asunto(s)
Lampreas/fisiología , Equilibrio Postural/fisiología , Postura , Natación/fisiología , Vestíbulo del Laberinto/fisiología , Potenciales de Acción/fisiología , Animales , Electrodos Implantados , Neuronas Motoras/fisiología , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...