Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 11(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505562

RESUMEN

The widespread use of Tebuconazole-based fungicides in phytosanitary treatments on a wide range of crops, on the one hand, and the lack of official reports on the amount of fungicide residues in nearby water basins, on the other hand, may lead to uncontrolled and hazardous contamination of water sources used by the resident population, and to serious effects on the environment and public health. Our study explores the acute toxicological risk of this fungicide on various organisms, from bacteria and yeast to fish, using a battery of tests (standardized Toxkit microbiotests and acute semi-static tests). By investigating the interaction between Tebuconazole and bacteria and yeast organisms, we observed that Gram-negative bacteria displayed a strong tolerance for Tebuconazole, while Gram-positive bacteria and yeasts proved to be very sensitive. The fish experiment was conducted on Chelon auratus juveniles exposed to five concentrations of the fungicide Tebustar EW (Tebuconazole, 250 g/L as active substance). After 96 h of exposure, the LC50 for C. auratus was 1.13 mg/L. In the case of the Toxkit microbiotests' application, the following results were recorded: Spirodela polyrhiza EC50 = 2.204 mg/L (after 72 h exposure), Thamnocephalus platyurus EC50 = 0.115 mg/L (after 24 h), and Daphnia magna EC50 = 2.37 mg/L (after 24-48 h). With the exception of bacteria and yeast, the same response pattern was observed for all non-target species tested; the response range expressed by concentrations causing growth inhibition or mortality was small, ranging between very close values that are quite low, thereby demonstrating the high toxicity of Tebuconazole-based fungicides to the environment.

2.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37107325

RESUMEN

Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.

3.
Toxics ; 10(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36548578

RESUMEN

This paper contributes to the ecotoxicological risk assessment of the Actellic 50 EC insecticide (with 50% pirimiphos-methyl as the active substance) tested on non-target organisms. The insecticide concentrations tested were the same for all organisms (0.1, 0.01, and 0.001 mg L-1 of Actellic 50 EC), with an exposure of 3-5-21 days for plants and 4-5-14 days for animals. The non-target organisms tested were both plants (wheat and two ferns) and animals (the Prussian carp and marsh frog tadpoles). The tested insecticide significantly inhibited the growth of roots in wheat, a result that was also confirmed by a microbiotest application (62% root growth inhibition in sorghum and 100% germination inhibition in white mustard and garden cress). In ferns, even for the lowest concentration, the percentage of germinated spores was inhibited by 40% for Asplenium scolopendrium. The recorded toxicological effects of Actellic 50 EC upon the Prussian carp included a decrease in the respiratory rate and oxygen consumption, an increase in the number of erythrocytes and leukocytes, and an increase in blood glucose levels. The highest concentration (0.1 mg L-1 of Actellic 50 EC) caused a 50% decrease in the survival rate of marsh frog tadpoles after 5 days of exposure, negatively affecting body volume and length. Given the high degree of toxicity of the insecticide Actellic 50 EC, we recommend continuing investigations on non-target species, including both plants and animals, as the sub-chronic effects are quite little known in the scientific literature.

4.
Pharmaceutics ; 14(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36145528

RESUMEN

The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...